ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

Análisis de estabilidad de las rocas del borde costero de la zona de La Chocolatera y La Lobería (Salinas) utilizando fotogrametría y clasificación geomecánica de macizos rocosos.

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Geólogo

Presentado por: Jean Paul Cedeño Cedeño

GUAYAQUIL - ECUADOR Año: 2022

DEDICATORIA

Este proyecto se lo dedico a mis padres, quienes me dieron apoyo incondicional y nunca dejaron de confiar en mí; a mí amada Sol y a mi hija, Avril, quienes fueron mi motivación diaria para seguir adelante cada día.

AGRADECIMIENTOS

Agradezco a mis padres, por todo el soporte dado a lo largo de la carrera, sin ellos nada hubiera sido posible.

A mi tutores y guías, Ángel y Peter, ya que con su experiencia y buena voluntad, me enseñaron que la geología es la ciencia más noble y divertida.

A la REMACOPSE y la bióloga Beatriz Ladines, por la apertura brindada para la realización de este proyecto.

A todos los docentes de la carrera, quienes estuvieron siempre prestos a ayudarme.

A todos mis compañeros de carrera, especialmente a Agustín García, Adrián Calle y Byron Ronquillo, quienes me brindaron su apoyo desinteresado durante este trabajo.

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, me (nos) corresponde conforme al reglamento de propiedad intelectual de la institución; *(nombre de los participantes)* y doy (damos) mi (nuestro) consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Jean Paul Cedeño Cedeño

EVALUADORES

Keila Mishelle Muthre Freire

PROFESOR DE LA MATERIA

Ángel Alberto Valdiviezo Ajila

PROFESOR TUTOR

Peter Stalin Olaya Carbo

PROFESOR TUTOR

RESUMEN

La Chocolatera y La Lobería son puntos turísticos que se encuentran dentro de la Reserva de Producción de Fauna Marino Costera Puntilla de Santa Elena (REMACOPSE), protege uno de los lugares más frecuentados de la costa central del Ecuador, recibiendo a más de 260000 turistas anualmente. Dentro de esta área se evidencia la formación de cavernas y el desprendimiento de rocas en sus taludes, eventos que pueden provocar un cambio en el hábitat local, con sus respectivas implicaciones ambientales y paisajísticas; y además de representar una amenaza para la seguridad de las personas que visiten la reserva. El presente trabajo presenta la caracterización geomecánica de las rocas (calidad) y la evaluación de estabilidad de taludes que conforman el borde costero comprendido entre La Chocolatera y La Lobería. Se utilizaron las clasificaciones geomecánicas Rock Mass Rating (RMR) de Bieniawski y Slope Mass Rating (SMR) de Romana para estimar la calidad de las rocas y la estabilidad de los taludes en esta zona. A partir de estas clasificaciones, se obtuvieron valores de calidad de roca de media a buena, y estabilidades de normales a estables; se realizó el análisis cinemático utilizando la representación en la red estereográfica y posteriores modelos determinísticos para rotura planar, los cuales estimaron los factores de seguridad bajo diferentes escenarios, concluyendo que los taludes mencionados son inestables al afrontar escenarios dinámicos, presentando factores de seguridad igual a cero.

Palabras Clave: Geotecnia, Geomecánica, SMR, Análisis de estabilidad.

ABSTRACT

La Chocolatera and La Lobería are tourist spots that are located within the Puntilla de Santa Elena Coastal Marine Fauna Production Reserve (REMACOPSE), protects one of the most frequented places on the central coast of Ecuador, receiving more than 260,000 tourists annually . Within this area, the formation of caves and the detachment of rocks on their slopes are evident, events that can cause a change in the local habitat, with their respective environmental and landscape facilities; and in addition to representing a threat to the safety of people who visit the reserve. This paper presents the geomechanical characterization of the rocks (quality) and the stability evaluation of slopes that make up the integrated coastline between La Chocolatera and La Lobería. Bieniawski's Rock Mass Rating (RMR) and Romana's Slope Mass Rating (SMR) geomechanical classifications were used to estimate rock quality and slope stability in this zone. From these classifications, rock quality values were obtained from medium to good, and stabilities from normal to stable; The cinematographic analysis was carried out using the representation in the stereographic network and later deterministic models for planar failure, which estimated the safety factors under different scenarios, concluding that the slopes became unstable when facing dynamic scenarios, presenting safety factors equal to zero.

Keywords: Geotechnics, Geomechanics, SMR, Stability analysis.

ÍNDICE GENERAL

EVALUADORES
RESUMENI
ABSTRACTII
ÍNDICE GENERAL III
ABREVIATURASVI
SIMBOLOGÍAVII
ÍNDICE DE FIGURASVIII
ÍNDICE DE TABLASX
CAPÍTULO 11
1. Introducción1
1.1 Descripción del problema1
1.2 Justificación del problema2
1.3 Objetivos2
1.3.1 Objetivo General2
1.3.2 Objetivos Específicos
1.4 Marco teórico
1.4.1 Marco geológico regional3
1.4.2 Marco Tectónico6
1.4.3 Clasificación geomecánica de los macizos rocosos8
1.4.4 Criterio Hoek y Brown10
1.4.5 Modelos de rotura en macizos rocosos11
1.4.6 Fotogrametría12
1.4.7 Modelo de Análisis Determinista13
CAPÍTULO 214
2. Metodología14

2.1	Recopilación de información bibliográfica	15
2.2	Trabajo de campo	16
2.3	Topografía	17
2.3.1	Fotogrametría	17
2.3.2	Modelo Digital de Elevación	18
2.4	Geología	18
2.4.1	Descripción litológica	18
2.4.2	Geología Estructural	18
2.5	Geotecnia	19
2.5.1	Ensayos de laboratorio	19
2.5.2	Clasificación geomecánica	21
2.6	Modelo determinístico de estabilidad de taludes rocosos	23
2.6.1	RocPlane	23
2.6.2	SWedge	24
CAPÍTI	JLO 3	25
3. R	ESULTADOS Y ANÁLISIS	25
3.1	Fotogrametría	25
3.2	Geología	27
3.2.1	Descripción macroscópica de las rocas	27
3.2.2	Descripción microscópica de las rocas	29
3.3	Geotecnia	29
3.3.1	Ensayos de laboratorio	29
3.4	Clasificación geomecánica	
3.4.1	Estaciones geomecánicas	
3.4.2	RMR	34
3.5	Análisis cinemático	

3.5.′	1	Representación en la red estereográfica	36
3.5.2	2	Clasificación geomecánica SMR	39
3.6	Мо	delamiento de estabilidad de taludes	40
3.6.2	1	Análisis determinista de rotura planar	40
3.6.2	2	Análisis determinista de rotura de cuña	45
3.7	Me	didas de estabilización sugeridas	
3.8	An	álisis de costos	50
CAPÍT	ULO	4	51
4. 0	Conc	clusiones Y Recomendaciones	51
4.1	Со	nclusiones	51
4.2	Re	comendaciones	52
BIBLIO)GR/	AFÍA	53
APÉNE	DICE	S	57

ABREVIATURAS

ESPOL	Escuela Superior Politécnica del Litoral				
REMACOPSE	Reserva de Producción de Fauna Marino Costera Puntilla de				
	Santa Elena				
RCS	Resistencia a la compresión simple				
EG	Estación geomecánica				
FICT	Facultad de Ingeniería de Ciencias de la Tierra				
CLIRSEN	IRSEN Centro de Levantamientos Integrador de Recursos Naturales p				
	Sensores Remotos				
VANT	Vehículo aéreo no tripulado				

SIMBOLOGÍA

- km Kilómetros
- m Metro
- cm Centímetro
- mg Miligramo
- MPa Megapascales
- P Planar
- W Cuña
- T Vuelco

ÍNDICE DE FIGURAS

Figura 1.1 Marco geológico de la Provincia de Santa Elena (Benítez, 1995)	.3
Figura 1.2 Mapa geológico de la provincia de Santa Elena (Autor, 2023)	.5
Figura 1.3 Mapa estructural de la region del antearco de Ecuador (Daly, 1989)	.7
Figura 1.4 Regimen de compresiones del margen Norandino (Pedoja, 2003)	. 8
Figura 1.5 Talud con rotura plana (Hoek & Bray, 1977)	11
Figura 1.6 Talud con rotura plana (Hoek & Bray, 1977)	12
Figura 1.7 Conjunto de bloques en rotura por vuelco (Hoek & Bray, 1977)	12
Figura 2.1 Diagrama de flujo de metodología	15
Figura 2.2 Componentes del VANT DJI [®] Phantom IV Pro 2	18
Figura 2.3 Ensayo de tracción indirecta, método brasileño	20
Figura 3.1 Ortofoto de La Chocolatera	25
Figura 3.2 Modelo digital del terreno (La Chocolatera)	26
Figura 3.3 Lineamientos identificados en el área	27
Figura 3.4 Roca brecha de falla	28
Figura 3.5 Lutita silicificada	28
Figura 3.6 Muestra M_EG04 en nícoles paralelos y nícoles cruzados	29
Figura 3.7 Gráficas de relación entre ensayos realizados.	30
Figura 3.8 Mapa de ubicación de las estaciones geomecánicas (Autor, 2023)	33
Figura 3.9 Croquis de las estaciones geomecánicas	34
Figura 3.10 Redes estereográficas de las estaciones geomecánicas	36
Figura 3.11 Diagrama de columna para ocurrencia de modelos de rotura	38
Figura 3.12 Esquema de análisis cinemático-imagen real para EG04	38
Figura 3.13 Esquema de análisis cinmetaico-imagen real para LOB01	39
Figura 3.14 Gráfica de relación de los distintos factores de seguridad para rotura plan	ar
4	41
Figura 3.15 Modelo de rotura planar para el talud EG04 (HÚMEDO-ESTÁTICO)	42
Figura 3.16 Modelo de rotura planar para el talud EG04 (HÚMEDO-DINÁMICO)	42
Figura 3.17 Modelo de rotura planar para el talud EG04 (SECO-DINÁMICO)	43
Figura 3.18 Modelo de rotura planar para el talud LOB01 (HÚMEDO-ESTÁTICO)4	43

ÍNDICE DE TABLAS

Tabla 1.1 Calificación del RMR según sus parámetros	9
Tabla 2.1 Bibliografía analizada para la recopilación de información1	6
Tabla 2.2 Características a describir en campo 1	17
Tabla 2.3 Medidas de probetas cilíndricas sometidas a ensayo2	20
Tabla 2.4 Sistema de clasificación de macizo rocoso RMR (Bieniawski, 1989) 2	22
Tabla 2.5 Factor de ajuste por el método de excavación (F4)2	23
Tabla 2.6 Porcentaje de exposición al agua de los taludes2	<u>2</u> 4
Tabla 3.1 Resultados de ensayo de Tracción Indirecta3	30
Tabla 3.2 Resistencia a la compresión simple de las rocas a partir de ensayo d	le
tracción indirecta3	30
Tabla 3.3 Resistencia a la compresión simple de las rocas a partir de Miller (1965).3	31
Tabla 3.4 Valores de ángulo de fricción básico hallados mediante tilt test	31
Tabla 3.5 Estimación de ángulos de fricción residual a partir de Barton & Choube	эу
(1977)	31
Tabla 3.6 Parámetros calculados para obtención de la cohesión	32
Tabla 3.7 Estaciones geomecánicas en el área de estudio 3	32
Tabla 3.8 Valores de RQD hallados a partir de criterio de Priest y Hudson (1981) 3	34
Tabla 3.9 Parámetros para cálculo RMR	35
Tabla 3.10 Clasificación geomecánica RMR de cada estación3	35
Tabla 3.11 Dirección de las familias de discontinuidades por cada estació	ón
geomecánica3	37
Tabla 3.12 Porcentajes de ocurrencia de los tipos de rotura	37
Tabla 3.13 Clasificación SMR de las estaciones geomecánicas4	10
Tabla 3.14 Factores de seguridad para rotura tipo planar en distintas condiciones d	le
ocurrencia4	10
Tabla 3.15 Factores de seguridad para rotura tipo cuña en distintas condiciones d	le
ocurrencia4	15
Tabla 3.16 Detalle de precios para elaboración del proyecto5	50

CAPÍTULO 1

1. INTRODUCCIÓN

Según el Centro de Investigación sobre Epidemiología de los Desastres, los deslizamientos de tierra son responsables del 17% de las muertes por desastres naturales en el mundo (Lacasse & Nadim, 2009). En este sentido, para reducir el daño de deslizamientos de tierra, varios estudios científicos han buscado predecir la ocurrencia de deslizamientos de tierra y evaluar distancias de descentramiento, como Chae et al. (2017) en su artículo "Landslide prediction, monitoring and early warning: a concise review of state-of-the-art" o Utomo et al. (2017) en su artículo "Landslide Prediction with Model Switching".

La Chocolatera y La Lobería son puntos turísticos que se encuentran dentro de la reserva marino-costera REMACOPSE, la cual, desde el año 2008 mediante Acuerdo Interministerial No. 1476 entre el Ministerio del Ambiente y el Ministerio de Defensa, es la encargada del manejo de las 52.231,37 Ha de área marina y 203,83 Ha de área terrestre, que incluye: conservación, investigación, manejo sustentable de la flora y fauna, turismo, educación y cultura del área (Ministerio del Ambiente, 2020).

De acuerdo al Reporte Histórico de Visitas del Sistema Nacional de Áreas Protegidas del Ecuador, en el año 2020 la REMACOPSE recibió a 264.521 visitantes, entre nacionales y extranjeros, equivalente al 16,44% de visitantes a reservas naturales en el país.

En Ecuador, en la provincia de Santa Elena, Cantón La Libertad, a inicios del año 2022 ocurrió el derrumbe del arco natural La Caleta; de acuerdo con relatos brindados por habitantes del sector, se estima que cuando empezó el asentamiento humano en esta franja costera, aquella estructura natural ya existía.

De acuerdo con la Hoja Geológica de Santa Elena (Instituto Nacional de Investigación Geológico, 1974) las formaciones geológicas predominantes tanto en la Caleta, como en La Lobería y La Chocolatera son similares, además son sitios afectados por procesos erosivos, sobre todo debido al oleaje, en donde se han generado cavernas y existe desprendimiento de material rocoso.

1.1 Descripción del problema

En el año 2022, Coello & Portilla realizaron el proyecto "Estudio del proceso erosivo en la zona comprendida entre La Chocolatera y La Lobería, Salinas", en donde estimaron tasas de erosión durante el periodo 2000-2019 de 1.05 m/año y 3.15 m/año en época

seca y húmeda, respectivamente, evidenciando de manera cuantitativa el cambio y retroceso de la línea de costa; sin embargo, las autoras recomendaron un análisis geológico - geotécnico, para caracterizar los desprendimientos de rocas y la formación de cavernas en los taludes de la zona de interés.

El borde costero se encuentra en constante erosión debido al oleaje continuo y se han formado cavernas y el desprendimiento de rocas en sus taludes, eventos que pueden provocar un cambio en el hábitat local, con las implicaciones ambientales y paisajísticas; y además de representar una amenaza para la seguridad de las personas que visiten la reserva (Portilla Diaz & Coello Garnica, 2022).

El desconocimiento de las propiedades físicas y mecánicas de las rocas que componen el macizo rocoso de los acantilados y la falta de estudios previos, provocan que las autoridades encargadas del cuidado y preservación de la reserva (REMACOPSE) muestren incertidumbre en la toma de decisiones, limitando el acceso a los turistas en varias áreas por prevención, pero sin respaldo técnico.

1.2 Justificación del problema

Este estudio busca reconocer de forma preliminar las principales características geológicas de las estructuras del borde costero en La Chocolatera y La Lobería para ampliar el campo de acción de las autoridades competentes en la gestión de medidas de prevención. Es fundamental realizar una clasificación geomecánica del macizo rocoso del borde costero, debido a que permitirá reconocer el grado de amenazas geológicas en el área y a partir de allí, tomar las acciones que permitan la preservación del turismo y la sostenibilidad de la reserva.

1.3 Objetivos

1.3.1 Objetivo General

Evaluar la estabilidad y calidad geomecánica de los acantilados costeros en La Chocolatera y La Lobería a partir de análisis geológico-geotécnico y modelos determinísticos.

1.3.2 Objetivos Específicos

 Clasificar geomecánicamente los puntos de mayor inestabilidad en los taludes rocosos de La Chocolatera y La Lobería, utilizando las clasificaciones geomecánicas Rock Mass Rating (RMR) y Slope Mass Rating (SMR)

- 2. Construir un modelado geomecánico determinístico por el método de límite de equilibrio para el reconocimiento de posibles roturas en el área.
- 3. Sugerir medidas conceptuales para prevenir el riesgo ante los peligros geológicos en el sitio.

1.4 Marco teórico

1.4.1 Marco geológico regional

La geología regional según Rodríguez, Velázquez y Guevara (2021) forma un puente esencial entre la geología local y la continental/global. Su propósito debería ser simplificar los datos locales de la superficie y el subsuelo a una escala que ayude a la predicción e ilumine aún más las generalizaciones más amplias implícitas en las síntesis continentales y globales.

La figura 1.1 muestra la distribución espacial de las 12 cuencas sedimentarias del antearco en el Ecuador, las cuales Benítez (1995) denomina como "Cuencas de Antearco Terciarias". El área de estudio se localiza en la Cuenca Progreso al suroeste del país.

Figura 1.1 Marco geológico de la Provincia de Santa Elena (Benítez, 1995).

De acuerdo con la carta geológica de Santa Elena (Instituto Nacional de Investigación Geológico, 1974) el área de estudio se encuentra sobre la Formación Cayo, la cual está

representada litológicamente por areniscas medias a gruesas y grauvacas (CLIRSEN, 2011). Levantamientos posteriores afectaron a la Península de Santa Elena y a la Cordillera Chongón y Colonche, lo cual provocó la creación de terrazas a distintos niveles, las cuales dieron nombre a la Formación Tablazo, constituida por conglomerados finos y areniscas calcáreas que cubren la Puntilla de Santa Elena en posición subhorizontal entre 50 y 100 m, yaciendo directamente sobre Cayo (Benítez, 1995).

Feininger & Bristow (1983) definió como Wildflysch Olistostrome en la Puntilla de Santa Elena a las capas de lutitas y areniscas silicificadas, con ondulaciones o rizaduras propias de deslizamientos singenéticos, de 185 a 1065 m de espesor, que ocurren entre las formaciones autóctonas subyacentes Piñón y Cayo, y el Grupo Azúcar suprayacente.

Núñez del Arco (1986) define estas capas como un bloque aislado y engolfado por el Grupo Azúcar, habiendo llegado por deslizamientos hacia el SW desde la Cordillera Chongón y Colonche.

Jaillard (1993) la define como la Formación Santa Elena, siendo un equivalente de la Formación Cayo, como capas de lutitas silíceas, blancas a verdosas, con delgadas intercalaciones de lutitas verdes, a menudo con contenido de cherts, a la cual se le ha asignado una edad de Cretácico Tardío, piso Maastrichtiano, alcanzando el Paleoceno en su tope. (Ordóñez et al., 2006)

Figura 1.2 Mapa geológico de la provincia de Santa Elena (Autor, 2023).

1.4.2 Marco Tectónico

Daly (1989) en su estudio de la evolución de las cuencas de antearco ubicadas en Ecuador, explica que la configuración estructural que se muestran actualmente en las dichas cuencas, se deben principalmente a su ubicación en el margen activo Andino, y a varios eventos estructurales; entre los que destacan: el fallamiento del basamento de Cayo y Piñón durante Eoceno medio a tardío, lo que produjo fracturas en sentido WNW-ESE, como las fallas Chongón Colonche y La Cruz (Figura 1.3); una fase extensiva en sentido E-W, durante el Oligoceno tardío al Mioceno medio, que se manifiestan con fracturas en sentido NNE-SSW.

Pedoja (2003) en su estudio de sismicidad, régimen de tensiones, deformaciones cosísmicas mediante el análisis geotectónico de los andes del ecuador y el estudio de los mecanismos focales de los terremotos en el margen del Bloque Norandino propone un régimen de estrés con la dirección de tensión máxima orientada a E-W, correspondiente a la mayor compresión debido a la convergencia de placas (Figura 1.4); lo que sería compatible con la formación de estructuras tensionales en el mismo sentido.

Figura 1.3 Mapa estructural de la region del antearco de Ecuador (Daly, 1989).

1.4.3 Clasificación geomecánica de los macizos rocosos

Las clasificaciones geomecánicas tienen como objetivo estimar los índices de calidad que se relacionan con las características geomecánicos del macizo y sus condiciones ante el sostenimiento de túneles y taludes, observando las características de los macizos rocosos y realizando ensayos de laboratorio (Ramírez & Alejano, 2008). Para esto, es importante conocer:

- Propiedades y comportamiento geomecánico del terreno
- Tipos de roturas (análisis cinemático)
- Geología, hidrogeología y otros parámetros que influyen en la estabilidad.

1.4.3.1 Clasificación Rock Mass Rating (RMR)

La clasificación propuesta por Bieniawski en 1973, actualizada en 1989, permite relacionar índices de calidad con parámetros geotécnicos del macizo para estimar resistencia y deformabilidad del macizo (González de Vallejo, 2002).

En esta clasificación se emplean parámetros como: Resistencia a compresión uniaxial de la matriz rocosa, grado de fracturación de la roca "RQD", espaciado de las discontinuidades, condiciones de las discontinuidades, condiciones hidrogeológicas y orientación de las discontinuidades (Guamán & Mendieta, 2013).

Clase	Valor	Descripción
1	RMR>80	Roca muy buena
П	80 <rmr<60< td=""><td>Roca buena</td></rmr<60<>	Roca buena
111	60 <rmr<40< td=""><td>Roca media</td></rmr<40<>	Roca media
IV	40 <rmr<20< td=""><td>Roca mala</td></rmr<20<>	Roca mala
V	RMR<20	Roca muy mala

Tabla 1.1 Calificación del RMR según sus parámetros

1.4.3.1.1 Resistencia a la compresión simple

La resistencia a la compresión simple es una característica mecánica que establece la capacidad de un material para soportar cierta carga por unidad de área y es expresada en Mpa.

1.4.3.1.2 Rock Quality Designation (RQD)

El índice de designación de calidad de roca (RQD) fue desarrollado por Deere (1989) para proporcionar una estimación cuantitativa de la calidad del macizo rocoso a partir de registros de núcleos de perforación. Priest y Hudson (1981) sugieren el cálculo del RQD a partir de la fórmula:

$$RQD = 100e^{-0.1}(0.1\lambda + 1)$$

Donde $\lambda = 1/X$ y X es el promedio del espaciado de discontinuidades en metros. Esta fórmula permite estimar un valor de RQD al no contar con las condiciones de perforación, y se basa en la frecuencia del espaciado de discontinuidades (λ)

1.4.3.2 Índice Slope Mass Rating (SMR)

Esta clasificación direccionada a taludes, fue propuesta por (Romana, 1997) y es obtenido a partir del RMR definiendo factores de ajustes los cuales toman en cuenta las orientaciones de las discontinuidades y excavaciones. Se formula como:

 $SMR = RMR + (F1 \times F2 \times F3) + F4$

Donde:

- RMR es la ponderación de calidad del macizo rocoso
- F1 es un subfactor de ajuste que varía entre 1,00 y 0,15 y es dependiente del paralelismo entre el rumbo de las discontinuidades y la cara del talud, y se establece por métodos empíricos o a partir de la expresión F1=(1 sen aj - as)², donde *aj* es el ángulo de dirección de la discontinuidad y *as* es el ángulo de dirección del talud
- F2 es otro subfactor que depende de la discontinuidad en la rotura tipo planar, y varía entre 1,00 y 0,15. Al igual que F1, se establece de forma empírica o a partir de la expresión F2=(tg² bj)², donde bj es el buzamiento de la discontinuidad. F2 será igual a 1,0 para las roturas por volcamiento.
- F3 es la relación entre los buzamientos de la discontinuidad y el talud
- F4 es un factor de ajuste por excavación.

1.4.4 Criterio Hoek y Brown

El criterio generalizado de Hoek-Brown es un criterio de falla empírico que permite evaluar la resistencia y deformabilidad de macizos rocosos fracturados en términos de tensiones principales mayores y menores, en el que predice envolventes de resistencia que concuerdan bien con los valores determinados a partir de pruebas triaxiales de laboratorio de roca intacta y de fallas observadas en macizos rocosos fracturados (Hoek & Brown, 2007).

El criterio generalizado de Hoek-Brown no es lineal y relaciona las tensiones principales efectivas mayor y menor (σ'_1 y σ'_3) de acuerdo con la siguiente ecuación:

$$\sigma'_{1} = \sigma'_{3} + \sigma_{ci} \left(m_{b} \frac{\sigma'_{3}}{\sigma_{ci}} + s \right)^{a}$$

Dónde:

 σ'_1 y σ'_3 son las tensiones principales efectivas axial (mayor) y de confinamiento (menor) respectivamente, σ_{ci} es la resistencia a la compresión uniaxial del material rocoso intacto, m_b es un valor reducido (para el macizo rocoso) de la constante material m_i (para la roca intacta) y *s* son constantes que dependen de las características del macizo rocoso. Para poder utilizar el criterio de Mohr Coulomb, es importante determinar los ángulos de fricción y cohesión de las rocas partiendo del criterio de Hoek & Brown. La cohesión puede calcularse a partir de la fórmula:

$$c' = \frac{(\sigma_{ci}) \left[2 - \frac{1}{2(m_i)(\sigma'_{3n})} \right] 2 - [1 + (m_i)(\sigma'_{3n})]^{-1/2}}{3,75 \sqrt{1 + 0.8(m_i)[1 + (m_i)(\sigma'_{3n})]^{1/2}}}$$

Donde:

$$\sigma'_{3n} = \frac{\sigma_{3max}}{\sigma_{ci}} y mi = \frac{\sigma_{ci}}{\sigma_t} - \frac{\sigma_t}{\sigma_{ci}}$$

Siendo σ_{3max} el límite superior de la tensión de confinamiento y σ_t la resistencia a la tracción. Es decir, se deben conocer la resistencia a la tracción y compresión simple de las rocas mediante ensayos de laboratorio; sin embargo, Brock (1993) propone la relación media entre las resistencias a compresión y a tracción de las rocas, la cual es de 16 (Ramírez & Alejano, 2008).

1.4.5 Modelos de rotura en macizos rocosos

1.4.5.1 Rotura tipo planar

Para la generación de una rotura planar, la principal condición es la existencia de un conjunto o familia de discontinuidades que estén buzando a favor del talud y con su misma dirección (González de Vallejo, 2002)

Figura 1.5 Talud con rotura plana (Hoek & Bray, 1977).

1.4.5.2 Rotura tipo cuña

Este tipo de roturas se dan, principalmente, por la formación de dos planos de discontinuidades a favor de su línea de intersección. Las roturas tipo cuña tienden a presentarse en taludes que cuentan con varias familias de discontinuidades. (González de Vallejo, 2002)

Figura 1.6 Talud con rotura plana (Hoek & Bray, 1977).

1.4.5.3 Rotura tipo vuelco

La rotura por vuelco se da en taludes en los cuales los estratos cuentan con un buzamiento en el sentido opuesto a la inclinación del talud y dirección paralela al mismo. Usualmente se visualizan estrados fracturados en bloques a favor del conjunto de discontinuidades ortogonales entre sí. (González de Vallejo, 2002)

Figura 1.7 Conjunto de bloques en rotura por vuelco (Hoek & Bray, 1977).

1.4.6 Fotogrametría

La fotogrametría es un metodología de trabajo cuyo objetivo es analizar y definir de manera precisa la forma, dimensión y posición de un cuerpo en cualquier espacio, a partir de una o varias tomas fotográficas de dicho cuerpo (Instituto Geográfico Agustín Codazzi, 2018).

En lo que corresponde a la geología éste método es utilizado para el análisis general del hundimiento de terrenos en diversas zonas, generando ortofotos, las cuales dan paso a modelos digitalizados de elevaciones, con los que crear perfiles y demás análisis geométricos, para conocer los volúmenes, topografías y altimetrías (Olivares, 2020).

1.4.7 Modelo de Análisis Determinista

Un modelo determinista es un modelo en el cual las mismas entradas generan, sin variación, los mismos resultados (Pacheco, 2017). Para este trabajo se utilizará la metodología de límite de equilibrio, el cual tiene como objetivo estimar los factores de seguridad de cada modelo de acuerdo al escenario planteado.

Para el procesamiento mediante software de análisis de estabilidad de taludes, el análisis determinista requiere de ciertos parámetros de entrada, los cuales son conocidos de forma exacta y a partir de ellos se obtienen factores de seguridad. Estos parámetros son: orientaciones del plano de la cuña, la resistencia al corte, la cohesión, entre otros. A partir de los factores de seguridad obtenidos, es posible realizar la interpretación de la estabilidad de un macizo rocoso partiendo de la relación entre las fuerzas de resistencia y las fuerzas impulsadoras. (RocScience, 2019)

CAPÍTULO 2

2. METODOLOGÍA

En un aspecto nacional se considera el artículo presentado por Bastidas et al. (2022) titulado "Análisis de Estabilidad de Túneles de Lava en la Isla Santa Cruz (Islas Galápagos, Ecuador) Usando Clasificaciones de Macizos Rocosos: Enfoque Empírico y Modelado Numérico" en el cual se realizó un análisis de estabilidad y determinación de grado de seguridad. La metodología de caracterización utilizada en este artículo se pueden aplicar a casos similares para estimar el grado de estabilidad y riesgo de colapso en los taludes que componen el área de estudio, constando con las siguientes fases: (i) recopilación de información a partir de cartografía geomecánica existente; (ii) clasificación geomecánica del macizo rocoso; (iii) modelado numérico aplicando el criterio de Hoek-Brown; (iv) comparación de metodología y discusión de los resultados.

Figura 2.1 Diagrama de flujo de metodología

2.1 Recopilación de información bibliográfica

Para el presente trabajo, se realizó una indagación previa sobre información de la zona y de metodologías aplicables en el presente proyecto, descrita en la Tabla 2.1.

Núm.	Titulo	Autor(es)	Fuente
1	Análisis de Estabilidad de	(Bastidas,	Multidisciplinary Digital Publishing Institute
	Túneles de Lava en la Isla	Soria, Mulas,	https://doi.org/10.3390/geosciences12100380
	Santa Cruz (Islas Galápagos,	Loaiza, &	
	Ecuador) Usando	Jordá, 2022)	
	Clasificaciones de Macizos		
	Rocosos: Enfoque Empírico y		
	Modelado Numérico		
2	Propuesta metodológica para la	(Valdiviezo ,	Repositorio ESPOL
	aplicación del Slope Mass	2014)	http://www.dspace.espol.edu.ec/xmlui/handle/
	Rating Continuo (SMR-C)		123456789/32267
	mediante un sistema de		
	información geográfica en los		
	taludes de la vía La Moya-		
	Achupallas		
3	Generación de geoinformación	(Centro de	Memoria Técnica del Sistema Nacional de
	para la gestión del territorio a	Levantamiento	Información (SIN)
	nivel nacional, escala 1:25.000.	s Integrados	
	Componente 4: Sistemas	de Recursos	
	productivos. Cantón Salinas.	Naturales por	
		Sensores	
		Remotos	
		(CLIRSEN),	
		2011)	
4	Plan de Manejo de la Reserva	(Ministerio del	Ministerio del Ambiente
	de Producción de Fauna	Ambiente,	https://www.ambiente.gob.ec/wp-
	Marino Costera Puntilla de	2020)	content/uploads/downloads/2020/07/Acuerdo-
	Santa Elena		Ministerial-NroMAE-2020-006.pdf
5	Características	(Soledispa,	Instituto Oceanográfico y Antártico de la
	geomorfológicas y	2008)	Armada
	sedimentológicas de la Bahía		https://www.inocar.mil.ec/web/index.php/publi
	de Santa Elena		caciones/actas-oceanograficas/file/242-
			caracteristicas-geomorfologicas-y-
			sedimentologicas-de-la-bahia-de-santa-elena
6	Geomechanical Evaluation of	(Carrión Mero,	Google Books, WIT Press eLibrary
	the Olón Cliff for Stabilization	y otros, 2020)	https://www.witpress.com/Secure/elibrary/pap
	pre-design of the Blanca		ers/SDP20/SDP20038FU1.pdf
	Estrella del Mar Sanctuary,		
	Santa Elene, Ecuador		

Tabla 2.1 Bibliografía analizada para la recopilación de información

2.2 Trabajo de campo

Inicia con el reconocimiento al área de interés; donde se establecen estaciones geomecánicas (EG).

Las herramientas requeridas en el levantamiento de fichas geomecánicas para la identificación, descripción y análisis de las características geotécnicas de los macizos rocosos son:

- Brújula geológica tipo Brunton y/o Geobrunton
- Martillo geológico
- Lupa
- Cintas métricas
- Esclerómetro o Martillo de Schmidt

El levantamiento geomecánico fue registrado en un formato de fichas de campo propuesto por González de Vallejo (2002) y modificada por Valdiviezo (2014) (ver apéndice A); en las que se detallan las características geotécnicas de la matriz rocosa y de las discontinuidades presentes en el talud, además del grado de meteorización de la roca; estos datos fueron complementados con la descripción litológica de la roca, toma de muestras (para el ensayo de laboratorio de tracción indirecta).

En la siguiente tabla se detallan las propiedades descritas en campo, recopilados en la fichas de levantamiento geomecánico:

Estructura estudiada	Característica o propiedad	Método			
Matriz rocosa	Identificación	Observación en campo			
	Meteorización				
	Resistencia de la roca	Ensayo de laboratorio			
Discontinuidades	Orientación	Medida con brújula geológica			
	Espaciado	Medido con cinta métrica			
	Continuidad				
	Rugosidad	Observación en campo			
	Resistencia de las paredes	Prueba con esclerómetro o Martillo Schmidt			
	Apertura	Medido con cinta métrica			
	Relleno	Observación en campo			
	Filtraciones				
Macizo rocoso	Familias de discontinuidades	Observación en campo			
	Grado de meteorización				
	Grado de fracturación				

Tabla 2.2 Características a describir en campo

2.3 Topografía

2.3.1 Fotogrametría

Para realizar las labores de fotogrametría se utilizó un VANT DJI[®] Phantom IV Pro 2, el cual cuenta con un peso de 1375g, un diámetro de 350mm, una cámara de 20M de

píxeles efectivos y el cual puede volar cerca de 30 minutos, a una altura propuesta de 60m. El control de vuelo fue comandado a través de la aplicación móvil DJI[®] Pilot contando con un GPS y un piloto automático.

Figura 2.2 Componentes del VANT DJI[®] Phantom IV Pro 2

2.3.2 Modelo Digital de Elevación

Para realizar el análisis topográfico, se utilizó una ortofoto conseguida a partir del conjunto de fotografías aéreas tomadas por el sobrevuelo con el VANT en el área de La Chocolatera. Luego, fueron procesadas en el software libre WebODM 1.9.12, en el cual se generó automáticamente el modelo digital de elevación y la ortofoto. A partir de estos productos, se procede a realizar con el análisis del terreno y a la elaboración de mapas en el software ArcGIS Pro para representar las estructuras presentes en el área fotografiada.

2.4 Geología

2.4.1 Descripción litológica

Para realizar la descripción litológica de las rocas del área se realizó el reconocimiento en el afloramiento, y se recolectaron muestras de cada litología, para realizar una descripción macroscópica de las rocas y además, elaborar láminas delgadas a un espesor de 0.3µ para la descripción microscópica. La preparación de las láminas delgadas se realizó utilizando los equipos del Laboratorio de Petrografía de la Facultad de Ingeniería en Ciencias de la Tierra (FICT), en ESPOL.

2.4.2 Geología Estructural

Los datos tomados en la ficha de levantamiento geomecánico son cargados en el software de RocScience, Dips v7.016; son representados en la red estereográfica,

permitiendo conocer las direcciones de las familias de discontinuidades existentes en cada estación y posteriormente serán utilizadas en la estimación de estabilidad a partir de la clasificación geomecánica SMR. Además, utilizando la herramienta de análisis cinemático del software, se realiza la evaluación de probabilidades de ocurrencia de rotura planar, cuña y vuelco, generarán los modelos determinísticos.

Figura 2.3. Procesamiento de datos para determinación de familias de discontinuidades en Dips.

2.5 Geotecnia

2.5.1 Ensayos de laboratorio

2.5.1.1 Ensayo de Tracción Indirecta (método brasileño)

Este ensayo consiste en someter una probeta cilíndrica de una roca a compresión. Dicho cilindro debe tener una longitud cercana a su radio, siendo comprimido en su diámetro hasta romperse a causa de las tensiones ocasiones en dirección perpendicular al cilindro (Ramírez & Alejano, 2008).

Figura 2.3 Ensayo de tracción indirecta, método brasileño.

Utilizando el concepto de Brock (1993), la cual establece una relación de 16 entre la resistencia a la compresión simple y la tracción de las rocas, se obtuvieron los valores de resistencia a la compresión simple para las muestras ensayadas.

Para realizar este ensayo, se extrajeron 2 muestras de rocas en el área:

- La muestra M_EG04 correspondiente a EG04, en el sector de La Chocolatera, la cual fue extraída de un sitio que presentaba deslizamientos.
- La muestra M_LOB01 correspondiente a LOB01, en el sector de La Lobería, la cual fue extraída del sitio de deslizamiento más reciente en La Lobería.

Las muestras de rocas obtenidas del área fueron sometidas a ensayos en el laboratorio de Geotecnia y Construcción de la Facultad de Ingeniería de Ciencias de la Tierra, en ESPOL. Para realizar el ensayo de resistencia a la tracción indirecta, fue necesario obtener varios testigos de perforación y, a partir de ellos, se obtuvieron 6 probetas cilíndricas, con las siguientes medidas:

Nombre	Diámetro (mm)	Espesor (mm)
EG04_1	54,7	25,35
EG04_2	53,75	30,12
EG04_3	54,55	22,32
LOB01_1	54,62	29,05
LOB01_2	54,7	30,6
LOB01_3	54,75	26,52

Tabla 2.3 Medidas de probetas cilíndricas sometidas a ensayo

Las probetas fueron sometidas al ensayo cumpliendo la norma ISRM 1981.

2.5.1.2 Tilt Test

El tilt test, o también llamado ensayo de inclinación, permite realizar la estimación del ángulo de rozamiento básico. Para medir este parámetro es necesario obtener 3 testigos, los cuales serán colocados en una superficie de apoyo horizontal: dos testigos son colocados paralelamente y juntos mientras que un tercer testigo es puesto encima de ellos. Posteriormente, la superficie en la cual se apoyan los testigos es inclinada hasta que el testigo localizado en la parte superior desliza sobre los otros dos testigos, permitiendo conocer el ángulo de rozamiento básico. (González de Vallejo, 2002) Para la obtención del ángulo de fricción residual, se trabajará con la expresión de Barton & Choubey (1977):

$$\Phi_r = (\Phi_b - 20^\circ) + 20\frac{r}{R}$$

Dónde:

 ϕ_b es el ángulo de fricción básico estimado mediante el tilt test, *r* es el valor de rebote del esclerómetro sobre la superficie de la pared en campo y *R* el valor del rebote del esclerómetro sobre la superficie de la roca sana y seca. (González de Vallejo, 2002)

2.5.2 Clasificación geomecánica

Para clasificar geomecánicamente los macizos rocosos en el sitio de trabajo, fue necesario tomar datos en campo utilizando una ficha de levantamiento geomecánico (ver apéndice A).

2.5.2.1 Rock Mass Rating (RMR)

Para realizar la clasificación geomecánica RMR, fueron procesados los datos descritos en la ficha de levantamiento geomecánico (ver apéndice C), los cuales incluyen los parámetros requeridos para calificar la calidad del macizo rocoso y, los resultados de los ensayos realizados a las muestras tomadas en campo, para proceder con la calificación del RMR utilizando la Tabla 2.4.

Parámetros			Rango de valores						
1	I Resistencia del Índice de material rocoso intacto (Mpa)		>10	4-10	2-4	1-2	Para es p e co	valores preferible insayo d pmpresio uniaxial	bajos e el é ón
		Resistencia a la compresión uniáxica	>250	100-250	50-100	25-50	5-25	1-5	<1
	Rating		15	12	7	4	2	1	0
2	2 Designación de calidad de roca (RQD)		90-100	75-90	50-75	25-50		<25	
	Rating		20	17	13	8		3	
3	Espaciado de dis	continuidades	>2 m	0,6-2 m	200-600 mm	60-200 mm	<60mm		
---	------------------	---	---------------------------	-------------------------	-------------------------	--------------------	------------------------------		
	Rating		20	15	10	8	5		
4	Condición de	Continuidad	<1 m	1-3 m	3-10 m	10-20 m	>20 m		
	discontinuidade	Rating	6	4	2	1	0		
	S	Separación	Ningun a	<0,1 mm	0,1-1,0	1-5 mm	>5 mm		
		D			11111		-		
		Rating	6	5	4	1	0		
		Rugosidad	Muy Rugosa	Rugosa	Ligeramen te rugosa	Lisa	Slickensided		
		Rating	6	5	3	1	0		
		Relleno		Rellen	o Duro	Re	lleno Suave		
			Ningun o	<5 mm	>5 mm	<5 mm	>5mm		
		Rating	6	4	2	2	0		
		Meteorizació n	Sana	Algo meteoriza da	Med. Meteoriza da	Muy meteorizada	Completamente meteorizada		
		Rating	6	5	3	1	0		
5	Hidrogeología	Flujo en 10 m de longitud de túnel (L/min)	Ninguno	<10	45931	25-125	>125		
		Condiciones Generales	Sin presen cia de agua	Represad o	Húmedo	Goteos	Flujo		
	Ratir	ng	15	10	7	4	0		

Tabla 2.4 Sistema de clasificación de macizo rocoso RMR (Bieniawski, 1989).

2.5.2.1.1 Cálculo RQD:

Priest y Hudson (1981) sugieren el cálculo del RQD a partir de la fórmula:

 $RQD = 100e^{-0.1}(0.1\lambda + 1)$

Donde $\lambda = 1/X$ y X es el promedio del espaciado de discontinuidades en metros. Esta fórmula permite estimar un valor de RQD al no contar con las condiciones de perforación,

y se basa en la frecuencia del espaciado de discontinuidades (λ)

2.5.2.1.2 Cálculo resistencia a la compresión simple:

La resistencia a la compresión simple puede ser estimada a partir de la fórmula propuesta por Miller (1965), el cual indica que:

$$\sigma = 10^{0.00088\gamma R + 1,01}$$

Dónde:

R es el promedio de los valores de índice R del esclerómetro tomado en campo, γ es la densidad de la roca y σ es el esfuerzo compresivo máximo que soporta un material rocoso antes de su fracturación (resistencia a la compresión simple) (Armas Zagoya, 2004).

2.5.2.2 Slope Mass Rating (SMR)

Una vez obtenido el RMR, se procede con la obtención del SMR, el cual incluye los factores de ajuste F1, F2, F3 y F4, dependientes de los buzamientos y los ángulos de dirección de las familias de discontinuidades.

- F1 se estima a partir de la expresión F1=(1 sen aj as)², donde aj es el ángulo de dirección de la discontinuidad y as es el ángulo de dirección del talud.
- F2 se calcula a partir de la expresión F2=(tg² bj)², donde bj es el buzamiento de la discontinuidad. F2 será igual a 1,0 para las roturas por volcamiento.
- F3 es la relación entre los buzamientos de la discontinuidad y el talud
- F4 es un factor de ajuste por excavación que se pondera a partir de la siguiente tabla:

Método	Talud	Precorte	Voladura	Voladura o	Voladura
	Natural		suave	excavación	deficiente
				mecánica	
F4	+15	+10	+8	0	-8

Tabla 2.5 Factor de ajuste por el método de excavación (F4)

2.6 Modelo determinístico de estabilidad de taludes rocosos

Utilizando el software RocPlane v4.010 y SWedge v7.019 de Rocscience, es posible determinar el factor de seguridad de cada uno de los taludes estudiados en el proyecto.

2.6.1 RocPlane

El software RocPlane v4.010 nos proporciona un factor de seguridad para roturas planares. Para crear un modelo determinista es necesario conocer varios parámetros de entrada como:

- La dirección de la familia de discontinuidades que podría generar la rotura
- La altura del talud
- La dirección del talud
- El peso específico de la roca que compone el talud
- El ángulo de fricción
- La cohesión
- Las fuerzas que puedan afectar el talud, como lo son la exposición al agua y las fuerzas sísmicas.

Para las fuerzas sísmicas, se considera el coeficiente sísmico (factor Z) de 0.5 ya que, de acuerdo a la ubicación geográfica, La Chocolatera y La Lobería se sitúan en una zona sísmica de clase VI, de acuerdo a la Norma Ecuatoriana de la Construcción (2014).

La exposición al agua es estimada visualmente observando el porcentaje del talud que es cubierto por el agua en marea alta (ver tabla 2.6)

Estación geomecánica	Exposición (%)	
EG04	20	
LOB01	15	

Tabla 2.6 Porcentaje de exposición al agua de los taludes

A partir de esto se realizan 3 análisis: estático-seco, dinámico-húmedo y dinámico-seco, entre los cuales se analizan la influencia de las fuerzas al talud y como varía la estabilidad de los mismos.

2.6.2 SWedge

SWedge v7.019 permite estimar el factor de seguridad para roturas tipo cuña a partir de varios parámetros de entrada como:

- La pareja de familia de discontinuidades que podrían generar la cuña
- La altura del talud
- La dirección del talud
- El peso específico de la roca que compone el talud
- El ángulo de fricción
- La cohesión
- Las fuerzas sísmicas y de agua presentes en el área.

A partir de esto se realizan 3 análisis: estático-seco, dinámico-húmedo y dinámico-seco, entre los cuales se analizan la influencia de las fuerzas al talud y como varía la estabilidad de los mismos.

CAPÍTULO 3

3. RESULTADOS Y ANÁLISIS

3.1 Fotogrametría

Con el vuelo del VANT, se cubrió un área de 86.948,65 m², reconstruyendo 7.386.511 puntos, con un GSD de 2,8 cm/px. Con el procesamiento de esta información se obtuvo la ortofoto, se generó el Modelo Digital del Terreno y el hillshade (mapa de sombras) de La Chocolatera.

Figura 3.1 Ortofoto de La Chocolatera

El modelo digital del terreno nos permitió reconocer las alturas mínimas y máximas en el área (Figura 3.2). Este modelo permitió generar los perfiles de los taludes en La Chocolatera para corroborar las alturas de estos, mostrando taludes de menores a los 4,5m (ver apéndice B).

Figura 3.2 Modelo digital del terreno (La Chocolatera)

La ortofoto de alta resolución, el modelo digital del terreno y el hillshade (mapa de sombras), obtenidos por fotogrametría, son los insumos que nos permitieron reconocer los principales lineamientos presentes en el área. Se observan fracturas que se extienden desde el borde costero, hasta varios metros tierra dentro (Figura 3.3); y posibles trazas de falla, que posteriormente se verifican en cada talud estudiado, por criterios cinemáticos.

Figura 3.3 Lineamientos identificados en el área

La abundancia de fracturas puede ser indicativo de la inestabilidad que se requiere comprobar en este proyecto.

Se identifican dos direcciones principales de lineamientos a partir de fotogrametría. El primer grupo de lineamientos tienen una dirección aproximada ENE, lo que sugiere que son estructuras extensionales producto del régimen compresivo. El otro grupo de lineamientos presentan direcciones aproximadas que van desde NNW a NNE, compatibles con el mismo régimen compresivo; sin embargo requiere un estudio neotectónico para verificación de este postulado.

3.2 Geología

3.2.1 Descripción macroscópica de las rocas

Para la muestra M_EG04 se pudo identificar una naturaleza sedimentaria, de textura clástica, con matriz arcillosa (matriz soportado). Entre sus granos se observaron cristales de cuarzo microcristalino (raya en 8). Se la definió como una roca brecha de falla, contando con una gran cantidad de fracturas internas.

Figura 3.4 Roca brecha de falla

La muestra M_LOB01 fue definida como una lutita silicificada, ya que se identificaron granos de tamaño arcilla (menor a 0.063 mm). Presentó una coloración gris y varias fracturas que recorrían la roca que, al romperse, exponían cristales de sal.

Figura 3.5 Lutita silicificada

3.2.2 Descripción microscópica de las rocas

Figura 3.6 Muestra M_EG04 en nícoles paralelos y nícoles cruzados

En esta, se pudo observar cristales fragmentados de cuarzo microcristalino, matriz arcillosa y clastos angulosos a subangulosos, de baja esfericidad y de mala clasificación

3.3 Geotecnia

3.3.1 Ensayos de laboratorio

Los resultados obtenidos a partir del ensayo de tracción indirecta fueron:

Nombre	nbre Fuerza Máxima Tracción		RCS
		indirecta	
Unidad	N	N/mm2	N/mm2
EG04_1	1555,28	0,71404	11,42464
EG04_2	4219,85	1,65937	26,54992
EG04_3	3728,07	1,94928	31,18848
LOB01_1	7768,95	3,11705	49,8728
LOB01_2	5066,32	1,92692	30,83072
LOB01_3	7018,57	3,0773	49,2368

Tabla 3.1 Resultados de ensayo de Tracción Indirecta

Figura 3.7 Gráficas de relación entre ensayos realizados.

Para el presente estudio, se utilizó el valor pico conseguido de cada muestra, ya que para cumplir el criterio de rotura de Hoek & Brown (1980) deben ser consideradas las tensiones efectivas principales que marquen la resistencia última previo a la rotura (Ramírez & Alejano, 2008). Cumpliendo con esto, se obtienen los valores de Resistencia a la compresión simple para las muestras ensayadas:

Muestra ensayada	RCS (MPa)
M_EG04	31,19
M_LOB01	49,87

Tabla 3.2 Resistencia a la compresión simple de las rocas a partir de ensayo de tracciónindirecta

De igual forma, se utiliza el propuesto de Miller (1965) para calcular la resistencia a la compresión simple:

Estación geomecánica	Peso específico (t/m3)	Índice R	RCS
EG01	2,07	29	33,75
EG02	2,04	29	33,17
EG03	2,07	35	43,2
EG04	2,07	28	32,52
EG05	2,24	29	37,22
LOB01	1,84	30	30,66

Tabla 3.3 Resistencia a la compresión simple de las rocas a partir de Miller (1965) Además, se realizó el tilt test para la obtención del ángulo de fricción básico (φ) de las rocas:

	M_EG04 (°)	M_LOB01 (°)
Prueba 1	35	28
Prueba 2	40	30
Prueba 3 35		32
Prueba 4	33	29
Prueba 5	37	33
Prueba 6	32	28
Φ_b	35,3	30

Tabla 3.4 Valores de ángulo de fricción básico hallados mediante tilt test

Estos valores son utilizadas en la expresión Barton & Choubey (1977) para obtener el ángulo de fricción residual:

	M_EG04 (°)	M_LOB01 (°)
Φ_b	35,3	30
r	22,22	30
R	28	30
Φ_r	31,17	30

Tabla 3.5 Estimación de ángulos de fricción residual a partir de Barton & Choubey (1977) Con los valores de tracción, resistencia a la compresión simple y de ángulos de fricción, fue posible obtener otros parámetros requeridos para cumplir con el criterio de Hoek & Brown y calcular la cohesión (c') de las rocas. Se observan los valores en la Tabla 3.6.

	σ_{ci} (MPa)	m _i	σ'_{3n}	c' (MPa)
M_EG04	31,04	15,94	0,06	2,07
M_LOB01	49,87	15,92	0,06	3,35

|--|

3.4 Clasificación geomecánica

3.4.1 Estaciones geomecánicas

Se realizaron 5 visitas a través de la cuales se establecieron 6 estaciones geomecánicas y se levantaron 9 fichas de campo, distribuidas en la Tabla 3.7.

Estación	Sector	Coordenadas (UTM)	Número de	Orientación
Geomecánica			fichas	de la
				pendiente
				(Dip/Dip
				direction)
EG01	La Chocolatera	498786,1; 9757972,1	2	30/285
EG02	La Chocolatera	498846,7; 9757969,3	1	45/125
EG03	La Chocolatera	498865,5; 9757994,2	1	80/160
EG04	La Chocolatera	498923,6; 9757999,1	2	88/180
EG05	La Chocolatera	499096,5; 9758076,8	1	55/170
LOB01	La Lobería	500440,8; 9756480,2	2	81/090

Tabla 3.7 Estaciones geomecánicas en el área de estudio

En La Chocolatera se establecieron 5 estaciones geomecánicas debido a la amplia extensión del sitio, en las cuales se presentan deslizamientos, cavernas y varias estructuras como familias de diaclasas y amplias fracturas que debieron ser medidas para la zonificar correctamente el área. En La Lobería, se encontró 1 talud con deslizamientos el cual fue tomado en cuenta para el presente estudio (ver Figura 3.8).

Figura 3.8 Mapa de ubicación de las estaciones geomecánicas (Autor, 2023).

Figura 3.9 Croquis de las estaciones geomecánicas

Figura 3.9A corresponde a EG01, Figura 3.9B corresponde a EG02, Figura 3.9C corresponde a EG03, Figura 3.9D corresponde a EG04, Figura 3.9E corresponde a EG05 y Figura 3.9F corresponde a LOB_01.

3.4.2 RMR

Con base en las mediciones realizadas en campo, se procedió a calcular la clasificación geomecánica de cada estación. Los valores de RQD obtenidos se muestran en la Tabla 3.8.

	EG01	EG02	EG03	EG04	EG05	LOB01
RQD	94,98	97,83	88,29	99,97	96,63	99,88

Tabla 3.8 Valores de RQD hallados a partir de criterio de Priest y Hudson (1981) Con los valores de resistencia a la compresión simple obtenidos a partir del propuesto de Miller (1965), se complementó la tabla de calificación con los parámetros medidos en

Parámetro	Resistencia a la compresión simple	RQD	Espaciado de discontinui dades	Continuida d	Separación	Rugosidad	Relleno	Meteorizaci ón	Hidrogeolo gía
EG01	25-50	90-100	200-600mm	3-10m	<0,1mm	Rugosa	<5mm	Algo meteorizada	Húmedo
EG02	25-50	90-100	60-200mm	3-10m	<0,1mm	Rugosa	<5mm	Muy meteorizada	Flujo
EG03	25-50	75-90	60-200mm	3-10m	<0,1mm	Rugosa	<5mm	Med. meteorizada	Húmedo
EG04	25-50	90-100	60-200mm	3-10m	>5mm	Rugosa	>5mm	Muy meteorizada	Húmedo
EG05	25-50	90-100	200-600mm	1-3m	0,1-1,0mm	Rugosa	<5mm	Algo meteorizada	Húmedo
LOB01	25-50	90-100	200-600mm	3-10m	>5mm	Ligeramente Rugosa	<5mm	Muy meteorizada	Húmedo

campo (ver Tabla 3.9), clasificando la calidad de las rocas de los taludes en la Tabla 3.10.

Tabla 3.9 Parámetros para cálculo RMR

	EG01	EG02	EG03	EG04	EG05	LOB01
RMR	62	49	55	51	63	57
Clasificación	Calidad	Calidad	Calidad	Calidad	Calidad	Calidad
	roca	roca	roca	roca	roca	roca
	buena	media	media	media	buena	media

 Tabla 3.10 Clasificación geomecánica RMR de cada estación

Para mayor detalle, ver apéndice D.

3.5 Análisis cinemático

3.5.1 Representación en la red estereográfica

Se observan las redes estereográficas de las estaciones geomecánicas. La imagen A corresponde a la EG01, imagen B a EG02, imagen C a EG03, imagen D a EG04, imagen E a EG05, imagen F a LOB01.

A partir de la red estereográfica, fue posible conocer las orientaciones de las familias de discontinuidades en cada estación geomecánica y desarrollar el análisis cinemático para cada una y los resultados son observados en la tabla 3.11.

Estación geomecánica	Dirección de la discontinuidad	Orientación de la pendiente	
	2/262		
	88/115		
EG1	80/171	30/285	
	90/226		
	15/174		
F.0.2	88/36	45/405	
EG2	2/247	45/125	
	26/132		
EG3	81/229	80/160	
	51/210		
	8/92		
EG4	78/182	88/180	
	8/82		
	0/154		
EG5	67/63	55/170	
	26/243		
	38/156		
LOB01	89/66	81/90	
	74/78	1	

Tabla 3.11 Dirección de las familias de discontinuidades por cada estación geomecár	nica
3.5.1.1 Análisis cinemático de las familias de discontinuidades.	

Una vez obtenidas las direcciones de las familias de discontinuidades, se dio paso a la herramienta de análisis cinemático del software Dips v7.016 en el cual se generaron los porcentajes de ocurrencias de los diferentes modelos de rotura de macizos rocosos. A partir de esto, se obtuvieron los porcentajes de rotura descritos en la Tabla 3.12.

	Planar (%)	Cuña (%)	Vuelco (%)
EG01	0,00%	0,00%	0,00%
EG02	0,00%	1,73%	4,76%
EG03	0,00%	12,12%	0,00%
EG04	100,00%	39,7%	5,73%
EG05	0,00%	3,68%	4,41%
LOB01	100,00%	16,05%	0,00%

Tabla 3.12 Porcentajes de ocurrencia de los tipos de rotura

Figura 3.11 Diagrama de columna para ocurrencia de modelos de rotura

Figura 3.12 Esquema de análisis cinemático-imagen real para EG04

Se pudo analizar que las estaciones EG04 y LOB01 muestran una probabilidad mayor de ocurrencia de falla planar y de cuña. Para las estaciones EG01, EG02, EG03, EG05 se computaron bajos porcentajes de ocurrencia que, sumado a la interpretación de las condiciones para la generación de cada modelo de rotura, permite establecer que son taludes con bajas probabilidades de ocurrencia de cualquier tipo de rotura. Para mayor detalle, ver apéndice E.

3.5.2 Clasificación geomecánica SMR

A partir de los valores de RMR se calculó la clasificación SMR. El análisis de esta clasificación fue realizado para todas las familias de discontinuidades presentes en cada talud, acorde al tipo de rotura que podría generar cada una de estas familias.

Estación geomecánica	Dirección de la discontinuidad	Orientación de la pendiente	Tipo de falla posible	RMR	SMR	Estabilidad
EG1	2/262		W		73	ESTABLE
	88/115		Т	62	74	ESTABLE
	80/171	30/285	Т		77	ESTABLE
	90/226		Р		77	ESTABLE
	15/174		Т		77	ESTABLE
EG2	88/36	45/125	Р	49	61	ESTABLE
	2/247	10,120	Т	70	61	ESTABLE
EG3	26/132	80/160	W	55	70	ESTABLE

	81/229		Р		63	ESTABLE
	51/210		Р		70	ESTABLE
	8/92		W		66	ESTABLE
EG4	78/182	88/180	Р	51	64	ESTABLE
	8/82		Т		66	ESTABLE
	0/154		W		72	ESTABLE
EG5	67/63	55/170	Т	63	74	ESTABLE
	26/243		Р		74	ESTABLE
	38/156		W		72	ESTABLE
LOB01	89/66	81/90	Р	57	71	ESTABLE
	74/78		Р		68	ESTABLE

Tabla 3.13 Clasificación SMR de las estaciones geomecánicas

Se identifican taludes mayoritariamente estables de acuerdo a la clasificación SMR sugerida por Romana (19997).

3.6 Modelamiento de estabilidad de taludes

Tomando en cuenta el análisis cinemático, se realizó un análisis determinista de rotura planar y cuña para los taludes de las estaciones EG04 y LOB01 en tres escenarios: cuando exista movimiento y no haya presencia de agua (SECO-DINÁMICO), cuando exista movimiento y exista exposición al agua (HÚMEDO-DINÁMICO) y cuando se cuente con exposición al agua sin movimientos (HÚMEDO-ESTÁTICO).

3.6.1 Análisis determinista de rotura planar

A partir del establecimiento de los parámetros requeridos por el software, se estimaron los factores de seguridad para rotura planar de las estaciones geomecánicas mencionadas, los cuales se describen en la Tabla 3.14.

	FS HÚMEDO Y ESTÁTICO	FS SECO Y DINÁMICO	FS HÚMEDO Y DINÁMICO
EG04	3,29	0	0
LOB01	7,6	0	0

Tabla 3.14 Factores de seguridad para rotura tipo planar en distintas condiciones deocurrencia

Figura 3.14 Gráfica de relación de los distintos factores de seguridad para rotura planar

Los factores de seguridad hallados demuestran que para las estaciones EG04 y LOB01 existen altas probabilidades de deslizamiento por rotura planar al enfrentarse a dinamismos como eventos sísmicos. A pesar de encontrarse a una constante exposición de agua, este no es una fuerza que disminuya drásticamente el factor de seguridad en los taludes.

RocPlane Analysis

Document Name: RocPlane_EG04.pln Job Title: RocPlane - Planar Wedge Stability Analysis View: PERSPECTIVE Safety Factor: 3.28819

Figura 3.15 Modelo de rotura planar para el talud EG04 (HÚMEDO-ESTÁTICO)

RocPlane Analysis

Document Name: RocPlane_EG04.pln Job Title: RocPlane - Planar Wedge Stability Analysis View: PERSPECTIVE Safety Factor: 0

Figura 3.16 Modelo de rotura planar para el talud EG04 (HÚMEDO-DINÁMICO)

RocPlane Analysis

Document Name: RocPlane_EG04.pln Job Title: RocPlane - Planar Wedge Stability Analysis View: PERSPECTIVE Safety Factor: 0

Figura 3.17 Modelo de rotura planar para el talud EG04 (SECO-DINÁMICO)

RocPlane Analysis

Document Name: RocPlane_LOB01.pln Job Title: RocPlane - Planar Wedge Stability Analysis View: PERSPECTIVE Safety Factor: 7.60049

Figura 3.18 Modelo de rotura planar para el talud LOB01 (HÚMEDO-ESTÁTICO)

RocPlane Analysis

Document Name: RocPlane LOB01.pln Job Title: RocPlane - Planar Wedge Stability Analysis View: PERSPECTIVE Safety Factor: 0

Figura 3.19 Modelo de rotura planar para el talud LOB01 (HÚMEDO-DINÁMICO)

RocPlane Analysis

Document Name: RocPlane_LOB01.pln Job Title: RocPlane - Planar Wedge Stability Analysis View: PERSPECTIVE Safety Factor: 0

Figura 3.20 Modelo de rotura planar para el talud LOB01 (SECO-DINÁMICO)

A partir de los modelos de rotura planar obtenidos para los taludes EG04 y LOB01 se entiende que las probabilidades de deslizamientos por roturas de tipo planar están dominadas por los eventos sísmicos que ocurran en el área.

	FS HÚMEDO Y ESTÁTICO	FS SECO Y DINÁMICO	FS HÚMEDO Y DINÁMICO
EG04	22,87	4,91	4,9
LOB01	21,61	11,89	13,74

3.6.2 Análisis determinista de rotura de cuña

Tabla 3.15 Factores de seguridad para rotura tipo cuña en distintas condiciones de ocurrencia

Figura 3.21 Gráfica de relación de los distintos factores de seguridad para rotura tipo

cuña

Swedge Analysis

Document Name: SWEDGE_EG04.swd Job Title: SWEDGE - Surface Wedge Stability Analysis View: PERSPECTIVE Safety Factor: 4.901

Figura 3.22 Modelo de rotura cuña para el talud EG04 (HÚMEDO-DINÁMICO)

Swedge Analysis

Document Name: SWEDGE_EG04.swd Job Title: SWEDGE - Surface Wedge Stability Analysis View: PERSPECTIVE Safety Factor: 22.8735

Figura 3.23 Modelo de rotura cuña para el talud EG04 (HÚMEDO-ESTÁTICO)

Swedge Analysis

Document Name: SWEDGE_EG04.swd Job Title: SWEDGE - Surface Wedge Stability Analysis View: PERSPECTIVE Safety Factor: 4.90733

Figura 3.24 Modelo de rotura cuña para el talud EG04 (SECO-DINÁMICO)

Swedge Analysis Document Name: SWEDGE_LOB01.swd Job Tide: SWEDGE - Surface Wedge Stability Analysis View: TOP Safety Factor: 21.6135

Figura 3.25 Modelo de rotura cuña para el talud LOB01 (HÚMEDO-ESTÁTICO)

Swedge Analysis

Document Name: SWEDGE_LOB01.swd Job Title: SWEDGE - Surface Wedge Stability Analysis View: PERSPECTIVE Safety Factor: 11.8914

Figura 3.26 Modelo de rotura cuña para el talud LOB01 (SECO-DINÁMICO)

Swedge Analysis Document Name: SWEDGE_LOB01.swd Job Title: SWEDGE - Surface Wedge Stability Analysis View: PERSPECTIVE Safety Factor: 11.8877

Figura 3.27 Modelo de rotura cuña para el talud LOB01 (HÚMEDO-DINÁMICO)

De acuerdo a los factores de seguridad estimados en el modelo determinístico para roturas tipo planar, los cuales fueron superiores a 1, se afirma que los taludes no presentan probabilidades de roturas de tipo cuña de acuerdo a los modelos generados.

3.7 Medidas de estabilización sugeridas

De acuerdo al Artículo 24 de la Ley Para La Conservación y Uso Sustentable de la Biodiversidad, el cual indica que "*la ejecución de obras de infraestructura dentro del Sistema Nacional de Áreas Naturales Protegidas podrá ser autorizada únicamente por el Ministerio del Ambiente,..., se garantizará la minimización de los impactos ambientales y sociales, el procedimiento de consulta previa los demás requisitos previos establecidos por la ley y los reglamentos respectivos*", para este trabajo se consideran medidas de estabilización poco invasivas, como lo son las medidas de protección superficial. Estas medidas buscan eliminar las dificultades ocasionadas por deslizamientos de rocas, aumentar el factor de seguridad de los taludes frente a roturas superficiales y disminuir la erosión en los taludes (González de Vallejo, 2002). Para realizar una estabilización en los taludes del área de estudio se propone:

- Instalación de mallas metálicas o materiales geotextiles, para estabilizar las zonas más fracturadas de los taludes.
- Siembra de especies vegetales que contribuyan al refuerzo del terreno superficial del talud.

Figura 3.28 Instalación de mallas metálicas en taludes (GEOBRUGG, 2018)

3.8 Análisis de costos

Ítem	Detalle	Costo en proyecto	Costo real
	ArcGis Pro	\$-	\$ 4.177,00
	WebODM	\$-	\$-
Softwaras	Google Earth	\$-	\$-
Soliwales	Dips (ROCSCIENCE)	\$-	\$ 495,00
	RocPlane (ROCSCIENCE)	\$-	\$ 495,00
	Swedge (ROCSCIENCE)	\$-	\$ 895,00
	Brújula geológica	\$-	\$ 100,00
Herramientas para	Martillo geológico	\$-	\$ 75,00
liubujo en oumpo	Esclerómetro	\$-	\$ 400,00
Fotogrametría	VANT	\$-	\$ 5.000,00
	Ensayo de tracción indirecta	\$-	\$ 125,00
Ensayos de laboratorios	Tilt test	\$-	\$-
laboratorios	Elaboración de lámina delgada	\$-	\$ 40,00
Mano de obra	ano de obra Procesamiento de información		\$ 2.400,00
Logístico	Transporte	\$-	\$ 300,00
LUGISTICA	Voluntarios	\$ -	\$-
	TOTAL	\$ -	\$14.502,00

Tabla 3.16 Detalle de precios para elaboración del proyecto

Llevar a cabo el análisis de estabilidad de las rocas del borde costero de La Chocolatera y La Lobería tendría un costo estimado de \$14.502,00, en donde se contemplan las licencias de los software utilizados para el procesamiento de la información, las herramientas básicas requeridas para un levantamiento geomecánico (brújula, martillo) y otros equipos implementados en el presente trabajo (VANT y esclerómetro). Así mismo, se toma en cuenta los costos aproximados de los ensayos de laboratorio realizados en este proyecto y la mano de obra que incluye el sueldo del personal que realizaría el conjunto de actividades para este proyecto (labores de campo, análisis cinemático, fotogrametría, descripciones litológicas, etc).

Estos precios son sujetos a variación dependiendo de la zona, tomando en cuenta que lo realizado durante este trabajo puede aplicarse a un análisis de estabilidad en cualquier parte del planeta.

CAPÍTULO 4

4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- Se pudieron cumplir con los objetivos de trabajo al estimar la calidad de las rocas y la estabilidad de los taludes en La Chocolatera y La Lobería. Además, se realizaron los modelos determinísticos a partir del software RocPlane y SWedge obteniendo los factores de seguridad para los taludes que presentaban probabilidades de rotura en el análisis cinemático; y una vez recopilado todos estos resultados, se pudieron proponer medidas para las zonas más afectadas, tomando en cuenta el ecosistema en el que se desarrolló el trabajo.
- Los lineamientos encontrados en el terreno reconocidos gracias a la fotogrametría son congruentes con los sentidos de fracturas propuestos por Daly (1989), sugiriendo que estos son producto de los eventos tectónicos que generaron fracturas en direcciones WNW-ESE y NNE-SSW.
- El análisis geológico-geotécnico permitió clasificar geomecánicamente las rocas del sitio como rocas de calidad media a calidad buena. Los sectores con menor calidad se encuentran en La Chocolatera, en donde se presenta la mayor franja de deslizamientos y en La Lobería, donde también existen movimientos de roca recientes.
- El análisis cinemático y los modelos determinísticos de estabilidad de taludes estiman que existen una alta probabilidad de rotura planar en dos sitios evaluados, EG04 y LOB01. Estos presentan altas probabilidades de rotura tipo planar y un porcentaje considerable de rotura tipo cuña; siendo los peores escenarios de inestabilidad (factores de seguridad igual a cero para rotura planar) los dinámicos, los cuales fueron estimados considerando el factor sísmico establecido para el área de estudio.
- La constante exposición al agua de los taludes es un causante del proceso erosivo natural en el sitio, pero no de la inestabilidad de los taludes en el área de estudio.
- La roca dominante en el área de La Chocolatera fue denominada como una roca brecha de falla y La Lobería como lutita silicificada, ambas coincidentes con las

descripciones litológicas realizadas por varios autores como (Ordóñez et al., 2006), (Núñez del Arco, 1986), (Feininger & Bristow, 1983).

4.2 Recomendaciones

- Se recomienda establecer una nueva ruta para los turistas que recorren los senderos de La Chocolatera, con la finalidad de mantener dicho camino alejado de la estación de inestabilidad EG04.
- Realizar un análisis neotectonico para identificar el origen de los lineamientos encontrados en el presente estudio y actualizar el marco tectónico del área.
- Proponer un estudio de los servicios ecosistémicos y ambiente marino costero para conocer las medidas más convenientes para la estabilización de los taludes en La Chocolatera y La Lobería.
- Es recomendable la integración de una mesa técnica para la gestión de riesgos en el sitio, tomando en cuenta los puntos de inestabilidad y los factores desencadenantes para los posibles deslizamientos.
- Se recomienda establecer una ruta alternativa de ingreso al mirador de lobos marinos en La Lobería, debido a su cercanía al talud de la estación LOB01, la cual presenta deslizamientos recientes y su roca es de media calidad.
- Es recomendable considerar el manejo integral de la reserva dentro del plan de ordenamiento territorial del cantón, con el objetivo de contar con apoyo inmediato ante cualquier evento.

BIBLIOGRAFÍA

- Armas Zagoya, J. M. (2004). Cartografía Geológica Estructural del Valle de Huizachal, como base para el análisis de estabilidad de taludes de la carretera Rumbo Nuevo, Tamps., México. Nuevo León: Linares, N. L. Obtenido de http://eprints.uanl.mx/5463/1/1020149840.PDF
- Ayala, C., & Rey, C. (2009). Establecimiento de bases metodológicas para la obtención de cartografía gravimétrica 1:50.000. Aplicación a la modelización 2D y 3D en varias zonas de la Península Ibérica. Capítulo 6. Modelización 2D y 3D. Obtenido de Modelación 2D y 3D: https://www.researchgate.net/publication/249977036_Establecimiento_de_bases __metodologicas_para_la_obtencion_de_cartografia_gravimetrica_150000_Aplica cion_a_la_modelizacion_2D_y_3D
- Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. *Rock mechanics, 6*(4), 189-236. Obtenido de https://link.springer.com/article/10.1007/BF01239496
- Bastidas, G., Soria, O., Mulas, M., Loaiza, S., & Jordá, L. (2022). Análisis de Estabilidad de Túneles de Lava en la Isla Santa Cruz (Islas Galápagos, Ecuador) Usando Clasificaciones de Macizos Rocosos: Enfoque Empírico y Modelado Numérico. *Geosciences, 12*, 1-15. doi:https://doi.org/10.3390/geosciences12100380
- Benítez, S. (1995). Evolución gedynámica de la provincia sur-equatoriana en el Cretáceo superior-Terciario. doi:http://dx.doi.org/10.13140/RG.2.2.23065.75369
- Bieniawski, Z. (1989). The Geomechanics Classification In Rock Engineering Applications. Obtenido de Paper presented at the 4th ISRM Congress,: https://onepetro.org/isrmcongress/proceedings-abstract/CONGRESS79/All-CONGRESS79/ISRM-4CONGRESS-1979-117/166370?redirectedFrom=PDF
- Byung, C., Ying, W., Ko, L., Junghae, C., & Hyuck, P. (2020). Simulación de escurrimiento del flujo de escombros cerca de un sitio de construcción en Corea. *Apllied Sciences, 10*, 1-22. doi:http://dx.doi.org/10.3390/app10176079

Carrión Mero, P., Pineda Ruiz, R., Chávez, M., Morante Carballo, F., Blanco, R., Aguilar, M., & Briones Bitar, J. (2020). Geomechanical Evaluation of the Olón Cliff for Stabilization pre-design of the Blanca Estrella del Mar Sanctuary, Santa Elena, Ecuador. Sustainable Development and Planning XI., WIT Press: Ashrurst, UK. Obtenido

https://www.witpress.com/Secure/elibrary/papers/SDP20/SDP20038FU1.pdf

- Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos (CLIRSEN). (2011). Generación de geoinformación para la gestión del territorio a nivel nacional, escala 1:25.000. Componente 4: Sistemas productivos. Cantón Salinas. Quito.
- Daly, M. (1989). Correlations Between Nazca/Farallon Plate kinematics and forearc basin evolution in Ecuador. Londres.
- Deere, D. (1989). Rock quality designation (RQD) after 20 years. Vicksburg: MS: Waterways Experimental Station. Obtenido de U.S. Army Corps Engrs Contract Report GL-89-1.
- Dueholm, K., & Ken, A. (1992). The application of multi-model photogrammetry in geology
 status and development trends. *Rapp. Grønlands geol, 156*, 69-72. Obtenido de [nstitute of Surveying and Photogrammetry, Technical University of Denmark.
- Feininger, T., & Bristow, R. (1983). *Cretaceous and Paleogene Geologic History of Coastal Ecuador.* Quito.

GEOBRUGG. (2018). TECCO® estabilización y control de la erosión de taludes y laderas inestables, con respeto al medio ambiente. Obtenido de www.geobrugg.com.

González de Vallejo, L. (2002). Ingeniería Geológica. Madrid: Pearson Educación.

Guamán, V., & Mendieta, F. (2013). Evaluación geomecánica del macizo rocoso en la cantera de materiales de construcción "Las Victorias". Obtenido de Universidad de Cuenca:

https://dspace.ucuenca.edu.ec/bitstream/123456789/4312/3/Tesina.pdf

Hoek, E., & Brown, E. (2007). Estimación de la resistencia de macizos rocosos en la práctica. Obtenido de International Journal of Rock Mechanics and Mining Sciences: https://www.u-cursos.cl/ingenieria/2007/2/MI46B/1/material_docente/bajar%3Fid_material%3D 143138

54

- Instituto Geográfico Agustín Codazzi. (2018). ¿Qué es la fotogrametría? Bogotá. Obtenido de https://www.igac.gov.co/es/contenido/que-es-la-fotogrametria
- Instituto Nacional de Investigación Geológico, M. M. (1974). *Hoja Geológica Santa Elena* (escala 1:100.000).
- Jaeger, J., & Cook, N. (1979). *Fundamentals of Rock Mechanics* (3rd edn ed.). London: Chapman & Hall.
- Lacasse, S., & Nadim, F. (2009). Landslide Risk Assessment and Mitigation Strategy. Springer, Berlin, Heidelberg.: (eds) Landslides – Disaster Risk Reduction. doi:https://doi.org/10.1007/978-3-540-69970-5_3
- Lapresta, B. (2014). *Clasificación geométrica RMR (Bieniawski, 1989). Hoja de cálculo.* Obtenido de Geología y geotécnica: https://geologiaygeotecnia.wordpress.com/2014/10/16/clasificaciongeomecanica-rmr-bieniawski-1989-hoja-de-calculo/
- Mapbox. (2022). La Chocolatera. Obtenido de https://mapcarta.com/es/N249411035
- May, D., & Frehner, M. (2013). Introduction to Finite Element Modelling in Geosciences. Obtenido de Spring Semester 2012: http://jupiter.ethz.ch/~gfdteaching/femblockcourse/2014/lectures/Motivation2013. pdf
- Ministerio del Ambiente. (2020). *Plan de Manejo de la Reser va de Producción de Fauna Marino Costera Puntilla de Santa Elena.* Salinas: Fundación Ecológica Bioeducar y Coservación Internacional Ecuador.
- Núñez del Arco, E. (1986). *Guía Geológica del Sur Oeste de la Costa Ecuatoriana.* Guayaquil.
- Olivares, P. (2020). ¿Qué es y para qué sirve la fotogrametría. Obtenido de AV3 Aerovisual: https://av3aerovisual.com/que-es-y-para-que-sirve-lafotogrametria/#:~:text=En%20el%20%C3%A1rea%20de%20la,de%20volumen% 2C%20topograf%C3%ADa%20y%20altimetr%C3%ADa.
- Ordóñez, M., Jiménez, N., & Suárez, J. (2006). Datos Bioestratigráficos y Paleoecológicos de las Cuencas: Graben de Jambelí, Progreso, Manabí, Esmeraldas y Oriente; del Levantamiento de la Península de Santa Elena, y de las Cordilleras Chongón Colonche, Costera y Occidental. Guayaquil: Centro de Investigaciones Geológicas Guayaquil.

Pacheco, E. (2017). *Modelos determinísticos con demanda constante*. Obtenido de https://app.goalproject.co/storage/images/bCNmJ0qRfXrtfTdW_1628180364.pdf

- Palmezano, E. (2022). Estimación del índice de resistencia geológica en macizos rocosos estratificados basado en la teoría fractal. Obtenido de Universidad EAFIT: https://repository.eafit.edu.co/handle/10784/30882?locale-attribute=es
- Pedoja, K. (2003). Les terrasses marines de la marge Nord Andine (Equateur et Nord Pérou): relations avec le contexte géodynamique.
- Portilla Diaz, A. H., & Coello Garnica, D. N. (2022). Estudio del proceso erosivo en la zona comprendida entre La Chocolatera y La Lobería, Salinas. Guayaquil.
- Ramírez Oyanguren, P., & Alejano Monge, L. (2008). *Mecánica de Rocas: Fundamentos e Ingeniería de Taludes.* Madrid.
- RocScience. (2019). Theory Manual: Factor of Safety Calculations Planar Failures. RocPlane. Obtenido de https://static.rocscience.cloud/assets/verification-andtheory/RocPlane/RocPlane-Theory-Manual-Factor-of-Safety-Calculations-Planar-Failures.pdf
- Rodríguez, R., Velázquez, L., & Guevara, E. (2021). Guía básica para la Elaboración de Atlas Estatales y Municipales de Peligros y Riesgos. Ciudad de México: Secretaría de Seguridad y Protección Ciudadana. Obtenido de https://www.cenapred.unam.mx/es/Publicaciones/archivos/55.pdf
- Romana, M. (1997). El papel de las clasificaciones geomecánicas en el estudio de la estabilidad de taludes (Vol. III). Granada: IV Simp. Nacional sobre Taludes y Laderas Inestables.
- Soledispa, B. (2008). Características geomorfológicas y sedimentológicas de la Bahía de Santa Elena. Guayaquil: Instituto Oceanográfico de la Armada, INOCAR.
- Valdiviezo , A. (2014). Propuesta metodológica para la aplicación del Slope Mass Rating Continuo (SMR-C) mediante un sistema de información geográfica en los taludes de la vía La Moya-Achupallas. Guayaquil.

APÉNDICES
APÉNDICE A FICHA DE LEVANTAMIENTO GEOMECÁNICO

Fuente: (González de Vallejo, 2002), modificada por (Valdiviezo , 2014)

PF	OYEC	r o :																E	STAC	:IÓN	:			N° H	ALOF	.:											744	164.		P	rov	vinc	ia	\square	_		_				_	_
E																							_	COL	JIGO		1								-	ICAL			÷	L	.an	alida	ad									
R	ALIZA	DO P	OR:															н	OJA/	/PLA	NO	-																		>	(:					_						-
FF	CHA:																	F	ото	s :															c	OORI	DEN	ADA	<u>s</u>	Y	':		_		_							
Ê		<i>(</i> .																Ē					_		4													- (.		Z	::			_	_		_				_	
u	rolog	IA:										NA	TUR	ALEZ	A:			Р	DTEN	NCIA	.:			DEF	OSIT	os	SUP	ERF	ICIAL	LES:	-				м	ORF	OLO	GIA:							ESPI	ESO	R:					
ES	TRUC	TURA	<u>IS</u>				PLIE	GUE	s			_		FAI	LAS						-			COL	UMN	NAS									0	rros	5	r				50.0	_									
FF	ACTU	RACIO	ÓN						JV.	Junt	as/i	s m3			ME	MU	Y GH <	1	DES			ME	G	1 -	3	740			3	B - 10	0	AETO	OPU	PEQ 10) - 3) Y PE >	- 30		<u> </u>		<u> </u>	MU	ITELC	> 6	1111			
G	RADO	DE M	IETEC	ORIZ/	ACIÓ	N			I					4100	IVIE	11	N12.P	ADA				IVIC	.D. N	11	I	ZAD				IVIC		1	V	ZADP			T	UIVII	-L. IV	V	5612	LADA	`				0210	VI	.510	UAL		
н	DROG	EOLC	DGÍA						SIN	PRE	SEN	CIA	DE A	GUA			9	ECO	(CO	N SE	EÑA	ES	DE A	GU.	A)			ł	ŀÚ№	1ED (0			GOT	EOS	1		FLU	011				_	CAL	JDA	L ES	TIM	ADC)			
	DJLKV	ACIO	INES.																								F	ESI ESCI	STEI ERĆ	NCI A ÓME	A "R TRC	." >																				
F	ото																										CR	00	UIS	5									1													-
F	STACI	ÓN	1	FS	PAC	ADO) (cr	n)		cc	ONTI	NUI	DAD	(m)	г			APF	RTU	RA (mm)			R.	Anr			F	RUG	iosi	DAD)		Т							RF		NOS								
						tas		idas ⁷	das					ľ		5		Ū.	1	erta		Í				Ĺ									-	Met	teo	riza	ciór	1	Filt	racio	one	es I	Resi	ist.	Mar	tillo	o (G	ieo;	Smi	ith
			untas	juntas	S	er. Jun	radas	separa	epara	baja		erada		Alta	Corrad		a hind	ADIEI	Ld Ld	er. Abl	a	ancha	Ancha	rnosa				onada			ılada			_												1						ĺ
	IENTO		Ext. J	Muy	Junta	Mod	Sepa	Muy	Ext. 9	Μuγ	Baja	Mod	Alta	Muv	MIN	Corrs		A Lio.	ADIE	NIOG	Anch	Muy	Ext. /	Cave				Escal			Ond			Plane		izada	orizada	rizada	eteo	lal						1		tente				
	MAZU	NTO			0	00	00	500	0			0	0			25	N 1	C.D	0.0	01		00	000	0	ión				ided			sided		ided		neteor	Meteo	neteo	et. M	residu					lando	0	stente	onsist		luro		
2	DEBU	MIE	< 2	2-6	6 - 21	20 - E	0 - 2	9 - 00	> 60	~	1-3	3 - 1	10 - 2	> 20	¢ \			- ²			> 10	0 - 1	0 - 1	> 100	posic	Sor	osa	_	ckens	gosa	_	ckens	esoBr	isa kens	eue	go m	led. P	1uy n	ompl	uelo	÷	edo	6		Auy b	lando	onsis	huy c	nro	Juy d	еR	ción
COL	DIR. I	BUZA					9	2(C	5 0	- ·	5			1	10	~	Com	Espe	I Rug	II Lisa	III Slic	IV Ru	V Lisa	VI Slid	VII RU	VIII LI IX Slid	دي ا	N I	2	N N	Ŭ >	VI SI	Seco	Hüm	- יי	Flujo	1	2 B	33	4	2	9	Índic	Direc
	-												_	-		-	+			_	-						-					_	_	_	+	-				_	+	-	╉	_	_			_	+	_	_	-
																																	_								1		7	_			_	4	4	4		
E					_																		_										_		t						+		+					_	_	_	_	
L																																									+		+					_	_	_		
																																									+		+					_	_	_		-
┝	-													-		+		-	-	-	+		_				-							+	+	-				-	+	+	+	_			_	+	+	+	_	-
					_												T																_		1						Ŧ		7	_			4	7	7	7	_	
																	T																								+		+					1	_	1		
																	\uparrow													E					╞			E			\pm	+	\pm		╧		╧	\pm	\pm	\pm		L
┝	+	$\left \right $	\square			_		_	_			┝		┢	+	+	+	+	+	+	+	+	_		-		┝	-	\vdash	\vdash	_	\vdash	\dashv	+	+	-	$\left \right $	\vdash		+	+	+	+	+	+	+	+	+	+	+	_	╞
														ŀ	-	-	1	-	-	-	+	-													╀		_				7	╀	Ŧ	7	7	4	7	7	7	7		L
													Ĺ		L	t	t			1	1						L				L				t	L	L				1		1		土		エ	1	1	1		L
┝	+	<u> </u>					_					⊢	-	┡	-	+	+	+	+	+	+	-	_		L	_	-	-	\vdash	\square	L	\square	Ц	+	-	┢	┞	\square	Ц	+	+	+	+	4	+	+	+	+	+	+	_	⊢
F	+	-		-		-	_	H	H	-		┢	\vdash	┢	t	+	╈	+	+	+	+	┥					┢	-		\square	⊢	\vdash	\vdash	+	+	┢	┢	\square	H	+	+	+	+	-	+	+	+	+	+	+	-	⊢
											l		L	L	ľ		T	l	l	1							L								T	L	Ĺ				t	1	t		t		1	1		1		L
Ξ	PO D	E PL	ANC	2		_	S0 ·	Est	rati	ifica	ació idad	n 4		J1.	Jn	- Ju	inta alla	is	+	-		-	REL		<u>10</u>			-	S -	Are	ena cilli	1		B	- B	rech	na nit:			Q-1	Cua Cale	arzo	+	_	_	0-	Óxi	ido:	s		_	

APÉNDICE B PERFILES DE TALUDES EN LA CHOCOLATERA

APÉNDICE C

FICHAS DE LEVANTAMIENTO GEOMECÁNICO

PROYECTO	ANALIS	IS DE ESTABILIDAD DE T	ALUD DE LA	CHOCOLATERA Y LA	FSTACIÓN ·		N° HOJA :		1				Provincia	Sa	nta Elena
		LOB	ERÍA		LonActor		CÓDIGO :		EG01		LOCALIZACIÓN	<u>.</u>	Cantón		Salinas
REALIZADO POR:		Cedeño Ced	eño lean Pa	ul	HOJA/PLANO								Localidad	La C	hocolatera
			cho scan ra		1103741 2440	<u>.</u>							X :	4	98846,7
FECHA:					FOTOS :						COORDENADA	<u>s</u>	Y :	9	757969,3
		12/11	/2022										Z :		
LITOLOGÍA: Lutita silicificada/Roca brecha de falla			NATURALE	ZA : Sedimentaria	POTENCIA: 3~	4m	DEPÓSITOS SUPE	ERFICIALES	: no presenta		MORFOLOGÍA:	Talud de playa		ESPESOR: 3-4 m	
ESTRUCTURAS	PLIE	GUES		FALLAS: fallas conjuga	adas						OTROS:				
,		BLOQUES		MUY GRA	NDES		GRANDES		MEDIOS	PEQU	EÑOS	M	JY PEQUEÑOS	MUY	BRECHIFICADA
FRACTURACIÓN		Jv Juntas/m	3	< 1			1 - 3		3 - 10	10	- 30		> 30		> 60
		SANA		ALGO METEORIZADA		MED	D. METEORIZADA		MUY MET	TEORIZADA		COMPL. ME	TEORIZADA	SUE	LO RESIDUAL
GRADO DE METEORIZACIÓN		1		Ш			Ш		1	IV		١	/		VI
HIDROGEOLOGÍA		SIN PRESEN	CIA DE AGU	4	SECO (CON S	EÑALES DE AG	GUA)		HÚMEDO	GOTEC	0S	FLUJO		CAUDAL ESTIMA	DO
Dirección del talud: 30/285													1		
								RI E	ESISTENCIA "R" SCLERÓMETRO						
FOTO								CROQUI	15		$\left\{ \right\}$		551		

			í '			F	ESPAC	JADC) (cm)			CON	TINUI	DAD	(m)			F	\PER ¹	TURA	A (mm	1)			R. A	Apr			RI	JGOSI	DAD									1	RELLF	ENOS							
			· · · · ·		7	, i	tas	der	ara	Ś	ŵ å	<u>_</u>	der	T	रि	Š	rad	· ·	erta	der	ha	a d	₹.	/er			4	alo		dula		1			Met	eoriza	ción		Т	Filtra	ciones	;		Resi	st. Ma	artillo (Geo;	3mith')
	1		COORD	ENADAS	Ă	Σ	키	Š	Ser	δ.	Ä∣₹	Baj	° ₽	Alte	μ	ΜĽ	Cer	Par	Abi	Mo	And	ž	Шă	Ca	.		ì	Esc		ě		ĉ	<u>n</u>		izad	izad	ted to	<u>a</u>		T						ent			
	DIP DIRECTION	DIP	x	Y	< 2	2-6	6 - 20	20 - 60	60 - 20U 201 - 600	- 400	~ auu < 1	1-3	3 - 10	10 - 20	> 20	< 0.1	0.1 - 0.25	0.25 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	l Rugosa	II Lisa	III Slickensided	V Lisa	VI Slickensided	VII Rugosa	VIII Lisa IV Slinkensided	Sana	II Algo meteori	III Med. Meteor	V Complet. Me	VI Suelo residu	Seco	Húmedo	Goteos	Flujo	1 Muy blando	2 Blando	3 Consistente	4 Muy consiste	A Miv duro	holine R	Dirección
So	180	13	·				10					2,5	5			x									s				X						X		T			x			X	κ.		T	T	2	24 🕇
So	150	12	'				9						3,5	9		x									s				X						X					х			Х	κ.				2	28 🚽
So	160	64					8						3,f	ô		x									s				X						X					х			Х	K				2	23 🕇
So	184	20	I'					31				T	T	1:	2	x									s				X						X		T		T	x			×	κ			T	2	25 🕇
J1	180	80	· · · ·					30					1			x									s				X						X		T			x			X	x T		T	T	2	20 🔶
J1	190	73	· · · ·					30				1,'	1			x									s				X						X		T			x			X	x T		T	T	2	20 🔹
J1	170	80	·					25						1:	2	x									s				X						X					x			×	K				1	9 🔶
J1	164	80	í'					32						1:	2	x									s				X						X					x			Х	λ.				2	26 🕇
J2	54	60	· · · ·				8						:	3		x									s				X						X					X			X	λ				3	30 🕇
J2	44	54	498780	9757971	1		18					1,4	4			x			\square		\square				s				x			-	-		X					X			×	~				2	28 🕇
J3	30	28	,						80				8,!	э		x									s				X	-					x					X			×	x				3	J5 →
J3	35	10	· · · · ·						80			1,4	4	-		x									s				X					1	X		+		-	X			X	x		_		3	- > 0ł
J3	26	80	498769	9757988	-			30				1,	5	-	1	x									s				X	1				+	x		+		+	X			×	x			+	3	32 🔻
J3	200	71	· · ·					35				-	3,:	2		x									s				X					1	x		+		1	x			×	x			+	3	30 🕇
J3	213	84	· · · ·				10					-	1	-	21	i x									s				X				-	1	x		-	-	1	x			×	x			1	3	30 🕇
J3	245	85	· · · · ·				14						1		20	x נ					\square				s			_	X						X		1			X			×	~			T	2	29 🕇
J4	111	84	· · · · ·		1		10	_				_	1		21	i x					\square				s				X						X			_		X			×	~				3	38 🕇
J4	115	90	· · · · ·				8						1		20	x נ					\square				s				X						X					X			×	~				3	32 🕇
J5	284	40	· · · · · ·				17								21	i x					\square			\square	s				X						X					X			X	хT				3	33 🕇
J5	224	40	· · · · ·				12						1		21	í x									s				X					1	X		\top	1		X			X	~		_		2	28 🕇
J5	226	90	· · · · ·						80	-	0,	,9	\top	-	1	x									s			-	X					1	X	. —	\top	-		X			X	~				2	29 🕇
J5	299	90	· · · · ·				13						1		21	i x					\square				s				X						X		1			X			×	~				3	36 ←
J5	226	90	· · · · ·		1			40				1./	5			x					\square			\square	s			_	X					1	X		\top			X	\square		X	<u>x</u> T		T	T	3	34 🚽
J5	355	90	1					32		-		_	3.	3		x									s		-		X					1	X		+	_	-	X			×	<u>_</u>	_	_		3	3 🛉
J5	340	89	í					40		_			1	5		x						1			s	-	-	_	X			-			X					X		_	X	x	_			2	27 🕇

PROVECTO	ANALISI	S DE ESTABILIDAD DE TA	ALUD DE LA	CHOCOLATERA	Y LA ESTACIÓ	ÓN ·	N° HOJA :		1				Provincia	Santa Elena
		LOB	ERÍA				CÓDIGO :		EG02		LOCALIZACIÓN	<u>l:</u>	Cantón	Salinas
REALIZADO POR:		Cedeño Ced	eño lean Pa	aul	HOJA/P	LANO :							Localidad	La Chocolatera
													X :	498846,7
FECHA:					FOTOS	:					COORDENADA	<u>s</u>	Y :	9757969,3
		16/12	/2022			-							Z :	
LITOLOGÍA: Lutita silicificada/Roca brecha de falla			NATURAL	EZA: Sedimentar	ria <u>POTENC</u>	<u>CIA:</u> 4-5m	DEPÓSITOS SUPI	ERFICIA	ALES: Arena de playa		MORFOLOGÍA:	Riscos/Peñascos		ESPESOR: 3-4 m
ESTRUCTURAS	PLIEC	GUES		FALLAS: fallas c	conjugadas						OTROS: bloque	s estratificados		
EDACTUDA CIÓN		BLOQUES		MU	UY GRANDES		GRANDES		MEDIOS	PEQU	IEÑOS	MU	Y PEQUEÑOS	MUY BRECHIFICADA
FRACTORACION		Jv Juntas/m	3		< 1		1 - 3		3 - 10	10	- 30		> 30	> 60
		SANA		ALGO METEOR	RIZADA	ME	D. METEORIZADA		MUY MET	EORIZADA		COMPL. MET	EORIZADA	SUELO RESIDUAL
GRADO DE METEORIZACIÓN		1		п			ш		l l	v		v		VI
HIDROGEOLOGÍA		SIN PRESEN	CIA DE AGU	IA	SECO (CON SEÑALES DE A	GUA)		HÚMEDO	GOTE	os	FLUJO		CAUDAL ESTIMADO
Dirección del talud: 80/160		1						<u> </u>						
									RESISTENCIA "R" ESCLERÓMETRO					
FOTO	1.00	a ser and						CRO	QUIS					
								8			2	<u></u>		Ecoz

						E	SPAC	IADO (cm)		С	ONTI	NUIDAI	D (m)				APE	RTUR	RA (mi	m)			R. /	Apr				RUGC	SIDAI	D										RELL	ENO	s							
								as	as	as							a D		ta ta		_	_	_												N	leteoria	zación			Filtre	acione	s		Res	sist. M	/artille	(Gec	;Smith	л)	_
			COORD	PENADAS	Ext. Juntas	Muy juntas	Juntas	Moder. Junt: Senaradae	Muy separad	Ext. Separad	Muy baja	Baja	Moderada	Alta Muv Alta	Muv cerrad	Cerrada	Parc. Abiert	Abierta	Moder. Abiel	Ancha	Muy ancha	Ext. Ancha	Cavernosa	oosición	pesor		Escalonada	-		Ondulada		Plana		ana	eteorizada	eteorizada	eteorizada	let. Meteo	00	edo	soe	ė	blando	lando	sistente	onsistente	Duro	y duro	ж. Ж	ción
	DIP DIRECTION	DIP	x	Y	< 2	2-6	6 - 20	20 - 60 60 - 200	200 - 600	> 600	۰ ۲	1-3	3 - 10	02 - 01	< 0.1	0.1 - 0.25	0.25 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Com	Es	I Rugosa	II Lisa	III Slickenside	IV Rugosa	V LISa VI Slickensider	VII Rudosa	VIII Lisa	IX Slickenside	-	II Algom	III Med. M	Nuy m	V Comp	Š	Húm	Got	FIG	1 Muy	2 B	3 Con	4 Muyo	5	9 Wn	Indic	Direc
J1	240	88						28					1	11	X									Α					х								х					Х		Х				4	18	¥
J1	220	86						32					1	11	X									Α					х								х					х		Х				1	24 <	+
J1	219	90						7	0				1	11	X									Α					Х								х					х		Х				1	33	•
J1	185	72	498848	97579969				6	0				1	10	X									Α					Х								х					х		Х				1	21	¥
J2	55	81	498852	9757970			13						3		X									Α					Х								Х					X		Х				1	21	₹
J2	54	60					:	31				1,3			X									Α					Х								х					X		Х				1	20 <	-
So	260	70					8					1,2			X									Α					Х								х					X		х				1	32 -	*
So	264	3					6					1,2			X									Α					Х								х					X		Х			_	1	35 -	•
So	263	12					7					1,8			X									Α					Х								х					X		Х				1	30 -	•
So	265	27					9					1,8			X									A					Х								X	_				х		Х				4	44	Ł
So	245	14					6					2,2			X									A					х								X			1		X		х			-	1	30	Ţ
F1	65	68								580			3,5		X									Α					х								X			1		X		х			-		28 -	+
So	75	3				4							3		X									A					х								x					X		х					43 -	•
So	86	8				5						2,5			X									A					Х								х					X		х				1	30 -	•
So	150	15					14						3		X									A					Х								х					X		Х				1	25 -	•
So	80	3				4						2,5			X									A					Х								х					X		Х				1	34 -	•
So	84	16					8					2,5			X									Α					Х								X	_				X		Х			\neg	- :	26	Ł
J1	180	79					19					1			X									Α					Х								X	-				X		Х			\neg	- :	24 -	-
J2	75	66		1				20			1		8		X				1	1	1	1	1	A		1			х								x	1	1	1	1	X		х			-		26	F
J1	210	90		1			:	20			1		3		X					1	1	1		A		1			х								x	1	1	1	1	X		х			-		29 -	•
J2	40	81					16						8,2		X							1		A		1			х								x				1	X		X	\neg		-	1	33 <	F
J2	30	86					:	20				2			X									A		1			х								x					X		х			-	1	25 -	•

PROYECTO:	ANALIS	IS DE ESTABILIDAD DE TA	LUD DE LA	CHOCOLATERA Y LA	ESTACIÓN :		N° HOJA :		1				Provincia		Santa Elena
		LOBE	RÍA				CÓDIGO :		EG03	!	OCALIZACIÓN	<u>.</u>	Cantón		Salinas
REALIZADO POR:		Cedeño Cede	no lean Pa	ul	HOJA/PLAN	0:							Localidad	1	a Chocolatera
													X :		498865,5
FECHA:					FOTOS :					<u> </u>	COORDENADAS	<u>i</u>	Y :		9757994,2
		16/12	/2022										Z :		
LITOLOGÍA: Lutita silicificada/Roca brecha de falla			NATURALE	ZA : Sedimentaria	POTENCIA: 3	3-4m	DEPÓSITOS SUPI	RFICIALES	: Arena de playa	1	MORFOLOGÍA:	Riscos/Peñaso	:05	ESPESOR: 3-4	m
ESTRUCTURAS	PLIE	GUES		FALLAS: fallas conjuga	adas						OTROS				
		BLOOUES		MUX GRA	NDES		GRANDES		MEDIOS	PEOLIE	ÑOS	,			
FRACTURACIÓN		Jv Juntas/m3		<1	11025		1-3		3 - 10	10 -	30		> 30		> 60
		SANA		ALGO METEORIZADA		MEI	D. METEORIZADA		MUY MET	EORIZADA		COMPL. N	IETEORIZADA	-	SUELO RESIDUAL
GRADO DE METEORIZACIÓN		I.		П			ш		p	v			v		VI
HIDROGEOLOGÍA		SIN PRESENC	IA DE AGUA	4	SECO (CON	SEÑALES DE AC	GUA)		HÚMEDO	GOTEOS	;	FLUJO		CAUDAL ESTI	MADO
Dirección del talud: 80/160															
								RE	SISTENCIA "R" SCLERÓMETRO						
FOTO				1000				CROQUI	s						_
								\langle				E003	Ì		\sum

						E	ESPA	CIAD	O (cm)		CO	NTIN	UIDA	D (m))			AP	ERTU	RA (n	ım)			R	. Apr				RUG	GOSIE	DAD										REL	LEN	os							
								s		as	s						_		-		ę															Mete	oriza	ción			Filtr	acion	es		F	lesist.	Marti	illo (G	ieo;Sm	nith)	
			COORD	ENADAS	Ext. Juntas	Muy juntas	Juntas	Moder. Junta	Separadas	Muy separada	Ext. Separada	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Moder Abier	Ancha	Muy ancha	Ext. Ancha	Cavernosa	sición	sor		Escalonada			Ondulada			Plana		eorizada eorizada	eorizada		. Meteo	esianai	- P	2 %		lando	opc	stente	isistente	0	duro	Ľ	ón
	DIP DIRECTION	DIP	x	Y	< 2	2-6	6 - 20	20 - 60	60 - 200	200 - 600	> 600	× 1	1 - 3	3 - 10	10 - 20	> 20	< 0.1	0.1 - 0.25	0.25 - 0.5	0.2 - 2.0	> 10	10 - 100	100 - 1000	> 1000	Compo	Espe	l Rugosa	II Lisa	III Slickensided	IV Rugosa	V Lisa	VI Slickensided	VII Rugosa	VIII Lisa			IV Muv met			Seco	Húmeo	Goteo	Flujo	1 Muy b	2 Blar	3 Consi	4 Muy con	2 Du	6 Muy	Índice	Direcci
So	190	25					8							10			х								A					Х						>	(X					X				27	-
So	195	50					15							10			х								A					Х						>	(X	(×					39	-
So	205	37				5								10			х								S					Х						>	(X	1			X					34	-
So	218	45						40				1	2,2				х								С					Х						>	(X	1				X				32	-
So	206	56						60				1	2,2				х								A					х						>	(X	1				X				38	-
J1	185	90						25					2				х								s					х						>	(X	1			Х					52	-
J1	196	78					15						2				х								S					х						>	(X	1				X				42	-
J2	226	56					13						2				х								S					х						>	(X	1			×					29	-
J1	219	80					8						2				х								A					х						>	(X	1			×					42	-
J1	235	86				5							1,2				х								A					х						>					X				Х					30	-
J2	207	67				5								5			х								A					х						\rightarrow					Х	:			X					30	-
J2	232	78				_	6	_		Т	T		3		Т		хT								S					х											X	:				X				28	-

PROYECTO	ANALI	ISIS DE ESTABILIDAD DE T	ALUD DE LA (HOCOLATERA Y LA	FSTACIÓN ·		N° HOJA :		1				Provincia	S	anta Elena
		LOB	ERÍA		<u>conversion n</u>		CÓDIGO :		EG04		LOCALIZACIÓN	<u>.</u>	Cantón		Salinas
REALIZADO POR-		Cedeño Cer	eño lean Pai	I	HOIA/PLANO ·								Localidad	La	Chocolatera
			cho scan i ac	•	<u></u>								X :		498923,6
FFCHA					FOTOS ·						COORDENADAS	5	Y :	1	J757999,1
		17/1	/2023										Z :		
LITOLOGÍA: Lutita silicificada/Roca brecha de falla			NATURALEZ	<u>A</u> : Sedimentaria	POTENCIA: 3-4n	n	DEPÓSITOS SUPE	RFICIALES: A	rena de playa		MORFOLOGÍA:	Riscos/Peñascos	S	ESPESOR: 3-4 m	
ESTRUCTURAS	PLII	EGUES		FALLAS: fallas conjuga	adas						OTROS				
		BLOOLIES		MUX GRA	NDES		GRANDES		MEDIOS	PEOL	IFÑOS	М		MIP	BRECHIEICADA
FRACTURACIÓN		Jv Juntas/m	3	<1			1 - 3		3 - 10	10	- 30		> 30		> 60
		SANA		ALGO METEORIZADA		ME	D. METEORIZADA		MUY MET	EORIZADA		COMPL. ME	TEORIZADA	SU	ELO RESIDUAL
GRADO DE METEORIZACION		1		П			ш		r	v		v	V		VI
HIDROGEOLOGÍA		SIN PRESEN	CIA DE AGUA		SECO (CON SE	ÑALES DE A	GUA)		HÚMEDO	GOTE	os	FLUJO		CAUDAL ESTIM	ADO
FOTO									A "R" ESCLEROMETRO	37			77		

						ESF	PACIA	DO (cr	n)		CO	NTIN	UIDAD	(m)			A	PER	TURA	(mm)				R. Apr			F	RUGOS	IDAD					-					RELLE	NOS		-		-				
																				T													Mete	orizar	ción			Filtrac	iones		1	Resis	st. Ma	rtillo ((Geo	;Smitl	h)	
			COORD	ENADAS	Ext. Juntas	Muy juntas Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha Muri ambo	Fut Arctic	Ext. Ancha	Cavernosa			Escalonada		Ondulada					ada rada	ada	8								atu	2				
	DIP DIRECTION	DIP	x	Y	< 2	2-6 6-20	20 - 60	60 - 200	200 - 600	> 600	, ,	- -	3 - 10 10 - 20	> 20	< 0.1	0.1 - 0.25	0.25 - 0.5	0.5 - 2.5	2.5 - 10	10-100	100 - 1000	1000	1001	Espesor	I Rugosa	II Lisa	III Slickensided	IV Rugosa V Lisa	VI Slickensided	VII Rugosa	VIII Lisa IX Slickensided	I Sana	II Algo meteoriz	IV Muy meteoriz	V Complet. Met	VI Suelo residua	Seco	Húmedo	Goteos	Flujo	2 Blando	2 Consistente	4 Muv consistence	F Duro		6 Muy duro	Indice R	Dirección
J	156	75					2	1				1						2					A	2	2		X							X				Х									19	•
J	179	71					4	2					3,7								2	240	A	240	D		X							X				х									28	+
J	173	76	498937	9757999				80					3					2					A	2	2		Х							X				х									22	•
J	142	77						120					3,7					2					A	2	2		X							X				х							Т		22	¥
J	180	83						80				1,5						2					A	2	2		X							X				х									20 *	-
J	158	69						200			0,7							1					A	1	1		X							X				х									19 4	-
J	153	69				1	9				0,8							2,5					A	2.5	5		x							x	\top	1	1	x		-		1		1	\top		38 4	-
J	187	75						90			0.9						0.3						A	0.3	3		x							X	1	1		x		+		+		-	+		31 4	-
J	159	88					2	7			0.6						0.3			-			A	0.3	3		x							Tx	+	+		x		+	-	+		-	+	+	29 4	-
J	178	78					3	0			-,-	2.1			0.1		-,-						A	0.1	1		X							X	+	+		x		-		-		-	+	-	26	-
J	354	85	498965	9758006			-	70				1.5		-		0.2			-	+			Δ	0.2	2		X							X	+	+		x		+	-	+		-	+	+	24 4	-
	12	70						115				21		+		0.2			-	+			A	0,2	2		X							1x	+	+		x		+	+	+		+	+	+	31	1
J	342	67					4	5				12		-		-,-	0.3		-	+			Δ	0.3	3		X							X	+	+		x		+	-	+		-	+	+	30	+
	155	75					5	0				.,		+	1		0,0	2	-	+	-	-	Δ	0,0	2		X							T _Y	+	+		X		+	+	+		+	+	+	24	÷
	342	66				1	0	<u> </u>				26		+	0.1		_	~	-	+		-		0.2	2									+	+	+	+		-+	+	+	+		+	+	+	27	Ť
50	108	7					0	-	+		0.0	2,0		-	0,1			1.5	-+	+	+	-		1.6	5	-	L Â						-	÷	+	+	-	1 ,	+	+	+	+		+	+	+	22	+
50	100	7					5	-			0,9		_	-				1,3	-	+	-	-		1,5	_	-	Ê				-		_	÷	+	+		1 ,	-+	+	+	+		+	+	+	24	⇇
- 00 80	70	10					0	-	\vdash		0,0	1.2		-	-		-	1,4	-	+	+	-		1,4	*	-	Ê	-			-		-	÷	+	+	-	1	-+	+	+	+		+	+	+	26	÷
50	89	15					0	-			_	1,2	_	-				1,4	-	+	-	-		1,4	-	-	Ê				-		_	÷	+	+		1	-+	+	+	+	_	+	+	+	20	È
- 00 	75	0					0	-	\vdash		-	1,3		+	-		_	1,5	-	+	+	-		1,5		-	Ê	-			-		-	÷	+	+	-	1 ,	-+	+	+	+		+	+	+	21	Ì
50	79	2					9	-	$\left \right $		-	-		-			_	2	-	+	-	_		4	-						-	+		÷	+-	+	+	÷	-+	+	+	+		+	+	+	23	-
	70	10					8	4	\vdash		0.0	1		-	0.4			1,4	-	+	-	_	A	1,4	+	-			-		_		_	+	+	+	-		+	+	+	+	_	+	+	+	29	*
	100	12					2	4			0,8			-	0,1				_	-	_		A	0,1		-							_	+	+	+		<u> </u>	-+	+	+	+	_	+	+	-	30	+
J	199	03				1	8	_	$\left \right $			1,7	_	-	1	0,2			-	+	-	_	A	0,2	-	-	X				-		_	$+\frac{x}{2}$	+	+	-	X	+	+	+	+		+	+	+	24	÷
J	301	00					2	2			0,8		_	-	0,1				-	-		_	A	0,1	1	-	X				_		_	- <u> x</u> -	+	+	-	X	-+-	+	+	+	_	+	+	+	25	-
J	13	/					3	3			0,5			_	-			1	_	_	_		A	1	1	-	X				_			+×-	+	+-	-	X	\rightarrow	+	—	+	_	—	+	+	31	-
J	65	60				1	4	_			0,6			_	-		0,5		_	_			A	0,5	5	-	X				_		X	_	+	+	_	X		+	_	+	_	+	+	+	30	*
J	63	52			+		2	2	\vdash		0,5	-+	_	_	-			1	\rightarrow	+	+	_	A	1	1	+	X	_			_	+	X	+	+	+	+	X	\rightarrow	+	+	+	_	+	+	+	35	Ŧ
J	62	52				1	4	_			0,4		_	_	-			1	_	_		_	A	1	1	-	X						X	_	+	+-	_	X	\rightarrow	+	_	+		+	+	+	31	-
J	/5	60					_	60			_	1,4		_				1	_	_			A	1	1	-	X						X	+	+	+	_	X	\rightarrow	+	+	+	_	+	+	+	31	*
J	63	65				1	2	_				1,1		_				1	_	_	_		A	1	1	_	X	_					X		+	+	_	X	-	+	—	—		+	+	+	25	-
J	290	25						102					3,7	_					3				A	3	3		X						X		_	_		X		_		_		_	+	_	30 <	<u>_</u>
J	295	24					4	5				1,9						2,5				_	A	2,5	5		X						Х	+		+		X	\rightarrow	+		_		+	+	+	32	-
J	240	40						70				2						1					A	1	1		X	:					Х			_		Х		\perp							29 <	←
J	263	40			+		3	5				2,2		_				1	-+			-+	A	1	1	-	X	_				+	X	+	+	+	1	х	\vdash	+	+	+		+	+	+	40	<u> </u>
J	305	32					3	5				1,3						2					A	2	2		X	_					Х	\perp	\perp	\perp		х	$ \rightarrow $	\perp	\perp	\perp		-	\perp	\perp	25	-
J	185	75				1	3				0,4							1,5					A	1,5	5		X					\downarrow	х	\perp	\perp	\perp	1	х		\perp	\perp			\perp	\perp	\perp	30	<u>+</u>
J	162	88				5					0,9							1					A	1	1		X						х	\perp	\perp	\perp		х		\square	\perp				\perp	\perp	35	<u>Î</u>
J	182	85				2	20					1,9				0,1							A	0,1	1		X						х		\perp			х									25	-
J	180	80					9					2,3						1					A	1	1		X						х					х									20	-
J	180	90					3	8				1,1						2					A	2	2		X						х					х									27	<u>Î</u>
J	190	78				5			ΙT				3,1						5				A	5	5		X	: _					х					x									40	1

PROYECTO	ANALIS	IS DE ESTABILIDAD DE T	ALUD DE LA	CHOCOLATERA Y LA	ESTACIÓN ·		N° HOJA :		1				Provincia	Si	anta Elena
		LOE	BERÍA		<u>conversion :</u>		CÓDIGO :		EG05	L	OCALIZACIÓN	<u>.</u>	Cantón		Salinas
REALIZADO POR		Cedeño Cer	leño lean Pa	ul	HOIA/PLANO								Localidad	La (Chocolatera
			Jeno Jean re		11037.91 27410	<u>.</u>							X :	4	499096,5
FFCHA					FOTOS ·					<u>c</u>	OORDENADAS		Y :	9	758076,8
		22/1	2/2022										Z :		
LITOLOGÍA: Lutita silicificada/Roca brecha de falla			NATURALE	ZA : Sedimentaria	POTENCIA: 3-4	lm	DEPÓSITOS SUPE	RFICIALES	: No presenta	N	NORFOLOGÍA: I	Riscos/Peñascos	S	ESPESOR: 3-4 m	
ESTRUCTURAS	DUE	GUES		EALLAS: fallas conjug	l										
	i cic			TALLAS. Tallas conjuga	8083						11105				
		BLOQUES		MUY GRA	ANDES		GRANDES		MEDIOS	PEQUE	ÑOS	MU	JY PEQUEÑOS	MUY	BRECHIFICADA
FRACTURACION		Jv Juntas/m	13	< 1			1 - 3		3 - 10	10 - 3	80		> 30		> 60
		SANA		ALGO METEORIZADA	·	ME	D. METEORIZADA		MUY MET	EORIZADA		COMPL. ME	TEORIZADA	SUE	LO RESIDUAL
GRADO DE METEORIZACIÓN		I		Ш			ш		1	V		1	/		VI
HIDROGEOLOGÍA		SIN PRESEN	ICIA DE AGU	4	SECO (CON SE	ÑALES DE A	GUA)		HÚMEDO	GOTEOS		FLUJO		CAUDAL ESTIMA	DO
Dirección del talud: 55/170		1		I				RE	ESISTENCIA "R"						
								ES	SCLERÓMETRO						
FOTO								<u>CROQUI</u>	S EG	05					

						E	SPA	CIAD	O (cm))		CON	TINUIE	DAD (n	n)			AF	PERT	URA	(mm))			R. Apr				RUG	OSID	AD										F	RELLE	INOS	;							
																																				Meteo	orizac	ión:			Filtra	ciones			Res	sist. N	/artillc) (Ger	o;Smit	ίh)	
			COORD	ENADAS	Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas Muv haja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa			Escalonada			Ondulada					8	ą	a														
			x	Y	< 2	2-6	6 - 20	20 - 60	60 - 200	200 - 600 > 600	~ 1 v	1-3	3 - 10	10 - 20	> 20	< 0.1	0.1 - 0.25	0.25 - 0.5	6.2 - 6 .0	2.5 - 10	~ 10	10 - 100	100 - 1000	> 1000	Composición	Discoso	Lisa	I Slickensided	/ Rugosa	' Lisa	1 Slickensided	'll Rugosa	'III Lisa	K slickensided Sana	I Algo meteorizada	II Med. Meteorizad	V Muy meteorizad	/ Complet. Meteo	/I Suelo residual	Seco	lúmedo	Goteos	-lujo	Muy blando	Blando	3 Consistente	Muy consistente	5 Duro	Muy duro	ndice R	Dirección
J	75	76							60			+	3				x	-			-					· -	=		x	~	~	~	2		+-	+-	+-	f	+-		×	ГŤ	-		x			4,		28	⇒
J	50	64							70			+	3				x				-			5	;				x		-				+	+	1x	+	+		x		\neg	-		x	\neg	-		37 -	-
J	55	60						50					3				x				-			5	;				x						+	+	1x	+	+	_	x		\neg	-		x	\neg	-		30-	-
J	62	70						50				2,	8				x							5	;				x							+	x	+	+		х			2	x			-		34 -	-
J	70	65						50					2				х							5	;				x							+	x	1			х			2	x					20 -	-
J	105	69						52				2,	3				х				-			5	;				x							x	1	1			х			2	x			-		26	1
J	339	88						54					3				x							5	;				x							x	1	1			x		_	2	x			_		31	1
J	125	52							68			2,	5				x							5	;				x							x					x				x			_		13 <	÷
So	340	24				6						2,	4				х							5	;				x							X					х	\square				x				22	¥
So	245	26					14						3				х							Ş	;				х								x				х		_)	x	\square				28	1
So	310	20				7							2				х							5	;				х								x				х					х				14	1
So	225	25					12						2				х							9	;				х								x				х					х				24	1
So	256	30					13					1,	3				х							9	;				х							х					х)	х					22	1
J	90	60							60				3				x							5	;				х								x				х)	х		LП			62	1
J	265	70						43				1,	3				x							5	;				х							х					х)	х		\square			32	1
J	255	80						43				1,	3				x							5	;				х							х					х)	х					23	Ť
J	210	82			1			20	ιT			1.	6	1 1			хΓ			T		- E		5	; [1	Ix T						1	Ix			I T	. 7	Ix 7	i T	T		. 1	іх Т	iΓ		. E	46	Ť.

PROYECTO:	ANALISIS	S DE ESTABILIDAD DE TA	ALUD DE LA CH	IOCOLATERA Y LA	ESTACIÓN :		N° HOJA :		1				Provincia	Sa	nta Elena
		LOB	ERIA				CÓDIGO :		LOB-01		LOCALIZACIÓN	<u>:</u>	Cantón		Salinas
REALIZADO POR:		Cedeño Ced	eño Jean Paul		HOJA/PLAN	<u>D:</u>							Localidad	La	Lobería
												_	X :	5	00440,8
FECHA:					FOTOS :						COORDENADAS	5	Y :	97	56480,2
		17/1	/2023			-							Ζ:		
LITOLOGIA: Lutita con bandeados de silice, roca tipo chert, clastos angulos a subangui	iosos, baja	estericidad	NATURALEZA	: Sedimentaria	POTENCIA: 4	.,5m	DEPOSITOS SUP	EKFICIALES	No presenta		MURFULUGIA:	raiud de playa		ESPESOR: 3-4 m	
ESTRUCTURAS_	PLIEC	GUES	F/	LLAS: fallas conjuga	adas						OTROS				
		BLOOUES		MUY GRA	NDES		GRANDES		MEDIOS	PEQU	FÑOS	MU	Y PEQUEÑOS	MUY	RECHIEICADA
FRACTURACIÓN		Jv Juntas/m	3	< 1			1-3		3 - 10	10 -	30		> 30		> 60
		SANA	А	LGO METEORIZADA		ME	D. METEORIZADA		MUY MET	EORIZADA		COMPL. MET	EORIZADA	SUEL	O RESIDUAL
GRADO DE METEORIZACION		1		П			ш		IV	v		v			VI
HIDROGEOLOGÍA		SIN PRESEN	CIA DE AGUA		SECO (CON	SEÑALES DE A	GUA)		HÚMEDO	GOTEO	s	FLUJO		CAUDAL ESTIMAL	00
Dirección del talud: 81/90													<u> </u>		
								R	ESISTENCIA "R" SCLERÓMETRO						
FOTO								CROQU							

TALUD	90	81	н	4,	1	E	SPAC	CIADC) (cm)			CONT	INUIE	DAD (m	1)			A	PERT	URA	(mm)				R. Ap	or			R	UGOS	IDAD										RE	LLEN	los						
																																			N	leteo	rizacio	ón		Fil	tracior	nes		R	esist.	Martillo	o (Ger	o;Smit	dh)
			COORE	DENADAS	Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	EXt. Separauas Muv baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa				Escalonada		Ondulada			Plana																
			x	Y	< 2	2-6	6 - 20	20 - 60	60 - 200 200 - 600	> 600	<1	1-3	3 - 10	10 - 20	> 20	< 0.1	0.1 - 0.25	0.25 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	osición	u u	sa		Kensided	Jose	kensided	gosa	g	kensided ana	go meteorizada	ed. Meteorizada	uy meteorizada	omplet. Meteo	Jelo residual		ор ,	s	hiv blando	lando	onsistente	luy consistente	0 III	luy duro	R
																									duo	sbes	Rugo	Lisa	I Sich	V rug	1 Slic	II Ru	III Lis	S Slic	Ř.	ž =	2	Ŭ	N N	Seco	-Tume	20164			0	≥ 		2	Direct
	DIP DIRECTION	DIP										-									_	-		-	-	-	-	=	= =				~		+-	-	-	-	<u> </u>			+	÷		+		<u> </u>	-	
So	165	55					8					1	3.2				х					-			۹. L				x							x			-	×	1	-	-	x	+	+	\rightarrow	-	20 🚽
J	65	90							96				3,4				х								Ą				х							х				X				x					19 🗲
So	154	66					10					2,8	3				х								Α.				х							х				X				x	1	\square			22 🔻
So	174	34					11					2,4	L I				х								۹.				х							х				X				x					30 🕇
J	65	90						28				2,8	3				х								Α.				х							х				X				X					28 🗲
J	64	86						23				2,9	9			х									Α.				х								х			X				X					39 🗲
F1	194	80					19						4,1				х								Ą				х								х			X				x					22 ←
ESTRIAS	295	42															х								۹.				х								х			X				х					24 🗲
J	75	66					16						3,1				х								С				х								х			х				х					25 🗲
F2	95	82						58					4,1				х								Α.				х								х			х				х					40 ←
ESTRIAS	180	32															х								A,				х								х			х				х					23 ←
So	180	14					14					2,2	2					x							Α.				х							х				X				X					27
J	80	73					10					2,1	1					x							A.				х							х				X				x					26 🖛
J	76	75					17					1,9	9					x							С				х							х				X				х	T				42 🗲
So	179	17					6					1,7	,				х								С				х							х				Х				х	T				25
So	170	27					5					12	2				х								S				Х							х				X				х					40
J	72	78					17					2,7	7				х								۹.				Х								х			X				X					41 🗲
J	55	57					14					2,6	3				х								A.				х							х				X				X					38 ┥
J	220	83					12					2,6	3				х								Α.				х							x				X				X					39 🗲
J	43	75					14					2,4	1				х								A.				х								х			X				х					26 🖛
J	150	25					12					2,	1				х								Α.				х								х			X		-	-	x	1				31 🚽
J	42	82						54				2,2	2				х								۹.				x		1				1		х			X				x	1				28
J	232	65						27				2,4	1				х								s				x						1		х			×		T		x	1				33 🖛
J	150	53						24				2,1	I				х								Α.				x								х			×		T		X	1				40 🔻
J	68	90					15				0	8					х								Α.				x							х				X				x					31 🗲

APÉNDICE D TABLAS DE CALIFICACIÓN RMR

	Parámetros					Rango de valores			
	Resistencia del material	Índice de carga Puntual (Mpa)	>10	4-10	2-4	1-2	Para valores l	pajos es preferible compresión uniaxia	el ensayo de al
1	rocoso intacto	Resistencia a la compresión uniáxica	>250	100-250	50-100	25-50	5-25	1-5	<1
	Rating		15	12	7	4	2	1	0
2	Designación de calidad	l de roca (RQD)	90-100	75-90	50-75	25-50		<25	
	Rating		20	17	13	8		3	
3	Espaciado de disco	ntinuidades	>2 m	0,6-2 m	200-600 mm	60-200 mm		<60mm	
	Rating		20	15	10	8		5	
		Continuidad	<1 m	1-3 m	3-10 m	10-20 m		>20 m	
		Rating	6	4	2	1		0	
		Separación	Ningun a	<0,1 mm	0,1-1,0 mm	1-5 mm		>5 mm	
		Rating	6	5	4	1		0	
		Rugosidad	Muy Rugosa	Rugosa	Ligeramente rugosa	Lisa		Slickensided	
4	Condición de	Rating	6	5	3	1		0	
	uiscontinuidades	Relleno		Rellen	o Duro		Rellend	o Suave	
			Ningun o	<5 mm	>5 mm	<5 mm		>5mm	
		Rating	6	4	2	2		0	
		Meteorización	Sana	Algo meteorizada	Med. Meteorizada	Muy meteorizad a	Com	pletamente meteor	izada
		Rating	6	5	3	1		0	
-	Hidrogeología	Flujo en 10 m de longitud de túnel (L/min)	Ningun o	<10	10-25	25-125		>125	
Э		Condiciones Generales	Sin presen cia de agua	Represado	Húmedo	Goteos		Flujo	
	Rating		15	10	7	4		0	

	Parámetros					Rango de valores			
		Índice de carga Puntual (Mpa)	>10	4-10	2-4	1-2	Para valores b c	oajos es preferible compresión uniaxia	el ensayo de I
1	Resistencia del material rocoso intacto	Resistencia a la compresión uniáxica	>250	100-250	50-100	25-50	5-25	1-5	<1
	Rating		15	12	7	4	2	1	0
2	Designación de calidad de roca (R	QD)	90-100	75-90	50-75	25-50		<25	
	Rating		20	17	13	8		3	
3	Espaciado de discontinuidades	6	>2 m	0,6-2 m	200-600 mm	60-200 mm		<60mm	
	Rating	_	20	15	10	8		5	
		Continuidad	<1 m	1-3 m	3-10 m	10-20 m		>20 m	
		Rating	6	4	2	1		0	
		Separación	Ningun a	<0,1 mm	0,1-1,0 mm	1-5 mm		>5 mm	
		Rating	6	5	4	1		0	
		Rugosidad	Muy Rugosa	Rugosa	Ligeramente rugosa	Lisa		Slickensided	
4	Condición de discontinuidades	Rating	6	5	3	1		0	
		Relieno		Rellen	io Duro		Rellenc	o Suave	
			Ningun o	<5 mm	>5 mm	<5 mm		>5mm	
		Rating	6	4	2	2		0	
		Meteorización	Sana	Algo meteorizada	Med. Meteorizada	Muy meteorizad a	Com	pletamente meteor	izada
		Rating	6	5	3	1		0	
5	Hidrogeología	Flujo en 10 m de longitud de túnel (L/min)	Ningun o	<10	10-25	25-125		>125	
Э		Condiciones Generales	Sin presen cia de agua	Represado	Húmedo	Goteos		Flujo	
	Rating		15	10	7	4		0	

	R	MF	RE	G0	3
--	---	----	----	----	---

	Parámetros					Rango de valores			
		Índice de carga Puntual (Mpa)	>10	4-10	2-4	1-2	Para valores b c	oajos es preferible compresión uniaxia	el ensayo de I
1	Resistencia del material rocoso intacto	Resistencia a la compresión uniáxica	>250	100-250	50-100	25-50	5-25	1-5	<1
	Rating		15	12	7	4	2	1	0
2	Designación de calidad de roca (R	:QD)	90-100	75-90	50-75	25-50		<25	
	Rating		20	17	13	8		3	
з	Espaciado de discontinuidades	6	>2 m	0,6-2 m	200-600 mm	60-200 mm		<60mm	
Ű	Rating		20	15	10	8		5	
		Continuidad	<1 m	1-3 m	3-10 m	10-20 m		>20 m	
		Rating	6	4	2	1		0	
		Separación	Ningun a	<0,1 mm	0,1-1,0 mm	1-5 mm		>5 mm	
		Rating	6	5	4	1		0	
		Rugosidad	Muy Rugosa	Rugosa	Ligeramente rugosa	Lisa		Slickensided	
4	Condición de discontinuidades	Rating	6	5	3	1		0	
		Relleno		Rellen	o Duro		Rellenc	Suave	
			Ningun o	<5 mm	>5 mm	<5 mm		>5mm	
		Rating	6	4	2	2		0	
		Meteorización	Sana	Algo meteorizada	Med. Meteorizada	Muy meteorizad a	Com	oletamente meteor	zada
		Rating	6	5	3	1		0	
-	Hidrogeología	Flujo en 10 m de longitud de túnel (L/min)	Ningun o	<10	10-25	25-125	5-25 1- 2 1 2 1 2 1 2 1 2 1 3 <60r	>125	
Э		Condiciones Generales	Sin presen cia de agua	Represado	Húmedo	Goteos		Flujo	
	Rating		15	10	7	4		0	

	Parámetros					Rango de valores	i		
	Resistencia del	Índice de carga Puntual (Mpa)	>10	4-10	2-4	1-2	Para valores b	oajos es preferible compresión uniaxia	el ensayo de I
1	material rocoso intacto	Resistencia a la compresión uniáxica	>250	100-250	50-100	25-50	5-25	1-5	<1
	Rat	ing	15	12	7	4	2	1	0
2	Designación de (RC	calidad de roca QD)	90-100	75-90	50-75	25-50		<25	
	Rat	ing	20	17	13	8		3	
3	Espaciado de di	scontinuidades	>2 m	0,6-2 m	200-600 mm	60-200 mm		<60mm	
5	Rat	ing	20	15	10	8		5	
		Continuidad	<1 m	1-3 m	3-10 m	10-20 m		>20 m	
		Rating	6	4	2	1		0	
		Separación	Ningun a	<0,1 mm	0,1-1,0 mm	1-5 mm		>5 mm	
		Rating	6	5	4	1		0	
	Condición do	Rugosidad	Muy Rugosa	Rugosa	Ligeramente rugosa	Lisa		Slickensided	
4	discontinuidad	Rating	6	5	3	1		0	
	es	Relleno		Rellen	o Duro		Rellend	o Suave	
		Kelleno	Ningun o	<5 mm	>5 mm	<5 mm		>5mm	
		Rating	6	4	2	2		0	
		Meteorización	Sana	Algo meteorizada	Med. Meteorizada	Muy meteorizad a	Com	oletamente meteor	izada
		Rating	6	5	3	1		0	
5	Hidrogeología	Flujo en 10 m de longitud de túnel (L/min)	Ningun o	<10	10-25	25-125		>125	
		Condiciones Generales	Sin presen cia de agua	Represado	Húmedo	Goteos		Flujo	
	Rat	ing	15	10	7	4		0	

	Parámetros					Rango de valores			
		Índice de carga Puntual (Mpa)	>10	4-10	2-4	1-2	Para valores l	bajos es preferible compresión uniaxia	el ensayo de I
1	Resistencia del material rocoso intacto	Resistencia a la compresión uniáxica	>250	100-250	50-100	25-50	5-25	1-5	<1
	Rating		15	12	7	4	2	1	0
2	Designación de calidad de roca (R	:QD)	90-100	75-90	50-75	25-50		<25	
	Rating		20	17	13	8		3	
з	Espaciado de discontinuidades	6	>2 m	0,6-2 m	200-600 mm	60-200 mm		<60mm	
0	Rating		20	15	10	8		5	
		Continuidad	<1 m	1-3 m	3-10 m	10-20 m		>20 m	
		Rating	6	4	2	1		0	
		Separación	Ningun a	<0,1 mm	0,1-1,0 mm	1-5 mm		>5 mm	
		Rating	6	5	4	1		0	
		Rugosidad	Muy Rugosa	Rugosa	Ligeramente rugosa	Lisa		Slickensided	
4	Condición de discontinuidades	Rating	6	5	3	1		0	
		Relleno		Rellen	io Duro		Rellend	o Suave	
			Ningun o	<5 mm	>5 mm	<5 mm		>5mm	
		Rating	6	4	2	2		0	
		Meteorización	Sana	Algo meteorizada	Med. Meteorizada	Muy meteorizad a	Com	pletamente meteor	izada
		Rating	6	5	3	1		0	
E	Hidrogeología	Flujo en 10 m de longitud de túnel (L/min)	Ningun o	<10	45931	25-125		>125	
Э		Condiciones Generales	Sin presen cia de agua	Represado	Húmedo	Goteos		Flujo	
	Rating		15	10	7	4		0	

RMR LOB01

	Parámetros					Rango de valores	i de la companya de l		
	Resistencia del	Índice de carga Puntual (Mpa)	>10	4-10	2-4	1-2	Para valores b	oajos es preferible compresión uniaxia	el ensayo de al
1	material rocoso intacto	Resistencia a la compresión uniáxica	>250	100-250	50-100	25-50	5-25	1-5	<1
	Rat	ing	15	12	7	4	2	1	0
2	Designación de (RC	calidad de roca QD)	90-100	75-90	50-75	25-50		<25	
	Rat	ing	20	17	13	8		3	
3	Espaciado de di	scontinuidades	>2 m	0,6-2 m	200-600 mm	60-200 mm		<60mm 5	
5	Rat	ing	continuidades >2 m 0,6-2 m 200-600 mm 60-200 mm <60mm g 20 15 10 8 5 Continuidad <1 m						
		Continuidad	<1 m	1-3 m	3-10 m	10-20 m		>20 m	
		Rating	6	4	2	1		0	
		Separación	Ningun a	<0,1 mm	0,1-1,0 mm	1-5 mm		>5 mm	
		Rating	6	5	4	1		0	
	Condición de	Rugosidad	Muy Rugosa	Rugosa	Ligeramente rugosa	Lisa		Slickensided	
4	discontinuidad	Rating	6	5	3	1		0	
	es	Relleno		Rellen	o Duro		Rellend	o Suave	
		Kelleno	Ningun o	<5 mm	>5 mm	<5 mm		>5mm	
		Rating	6	4	2	2		0	
		Meteorización	Sana	Algo meteorizada	Med. Meteorizada	Muy meteorizad a	Com	pletamente meteor	izada
		Rating	6	5	3	1		0	
5	Hidrogeología	Flujo en 10 m de longitud de túnel (L/min)	Ningun o	<10	45931	25-125		>125	
		Condiciones Generales	Sin presen cia de agua	Represado	Húmedo	Goteos		Flujo	
	Rat	ing	15	10	7	4		0	

APÉNDICE E ANÁLISIS CINEMÁTICO DE LAS ESTACIONES GEOMECÁNICAS

60	lor	_	Dens	ty Concer	trations	
		-	(Jeans	00	1.10	
			1	.10 -	2.20	
			2	.20 -	3.30	
			3	.30 -	4.40	
			4	.40 -	5.50	
			5	.50 -	6.60	
			e	.60 -	7.70	
			7	.70 -	8.80	
			8	.80 -	9.90	
		6 m 1	5	.90 -	11.00	
		Cont	our Data	Pole Vec	tors	
		Maximum	Density	10.95%		
	Co	ntour Dist	nibution	Fisher		
	C	ounting C	ircle Size	1.0%		
72						
Kin	ematic	Analysis	Planar Sa	sing		
	5	lope Dip	30			
Slop	pe Dip I	Direction	285			
	Frictio	on Angle	35°			
	Later	al Limits	20.0			
	curce	an Lannes	2.0	Cuttical	Total	94
				Chica	TOLA	79
		Planar :	Siding (AI)	0	25	0.00%
	Color	Dip	Di	p Direction	Label	
			User Plan	les		
1		30		285	TALLIE	1
			loan Cot I	lanor	111201	
100	-	00	ean over r	anes .		
1m	_					
	-			115		
zm		80	0	171		
2m 3m 4m		80 90 15	0	115 171 226 174		
2m 3m 4m		80 90 15		113 171 226 174		
2m 3m 4m		80 90 15		113 171 226 174		
2m 3m 4m Co		80 90 15	Dens	117 171 226 174	ntrations	
2m 3m 4m Co	olor	80 900 15	Dens	171 226 174 ty Concer	strations	
2m 3m 4m Co	olor	80 90 15	Dens	171 171 226 174 174 174 174 174 174 174 174	1.10 2.20	
2m 3m 4m 60	alor	80 90 15	Dens	tty Concer .10 - .20 - .20 -	1.10 2.20 3.30	
2m 3m 4m Co	olor	80 90 15	Dens	II71 171 226 174 I74 I74 I74 I74 I74 I74 I74 I	1.10 2.20 3.30 4.40	
2m 3m 4m Co	B B B B B B B B B B B B B B B B B B B	80 90 15	Dens 0 1 2 3 4 4	tty Concer 171 171 226 174 174 174 174 174 174 174 174	1.10 2.20 3.30 4.40 5.50	
2m 3m 4m Co	olor	80 90 15	Dens 0 1 2 3 4 5	tty Concer 171 226 174 174 174 174 174 174 174 174	1.10 2.20 4.40 5.50 6.60 7.70	
2m 3m 4m Co	olor	80 90 15	Dens 0 1 2 3 4 4 5 6 7	II71 171 226 174 I74 I74 I74 I74 I74 I74 I74 I	1.10 2.20 3.30 4.40 5.50 6.60 7.70 8.80	
2m 3m 4m Co	olor	80 90 15	Dens 0 1 2 2 3 4 4 5 6 7 2	II71 171 226 174 174 174 174 174 174 174 174	trations 1.10 2.20 3.30 4.40 5.50 6.60 7.70 8.80 9.90	
2m 3m 4m Co	olor	80 90 15	Dens 0 1 2 3 4 4 5 5 7 7 8 5	III 171 226 174 174 174 174 174 174 171 226 - 100 - 100 -	1.10 2.20 3.30 4.40 5.50 7.70 8.80 9.90 11.00	
2m 3m 4m Co	olor	80 90 15	Dens 0 1 2 3 4 4 5 6 2 8 5 6 2 8 5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	tty Conces 171 226 174 174 174 174 174 174 174 174	1.10 2.20 3.30 4.40 5.50 6.60 9.90 9.90 9.90 11.00 tors	
2m 3m 4m Co	olor	So 90 15 Conto Maximum	Dens (1 2 2 3 4 4 6 6 6 7 8 8 6 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	tty Concer 171 226 174 174 174 174 174 174 174 174	1.10 2.20 3.30 4.40 5.50 8.60 9.90 11.00 bors	
Co	olor	Control Contro	Dens C 1 2 2 2 4 4 5 6 7 7 8 9 5 0 current 1 2 2 2 2 2 2 2 2 2 2 2 2 2	ty Concer 171 226 174 174 226 174 174 226 174 174 174 174 174 174 174 174	110 2.20 3.30 6.60 7.70 8.80 9.90 11.00 tors	
2m 3m 4m Co	olor	Control Contro	Dens (1 2 3 4 4 5 6 7 8 8 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ty Concer 171 171 172 174 174 174 174 174 174 174 174	1.10 2.20 3.30 4.40 5.50 6.60 7.70 8.80 9.90 11.00 tors	
2m 3m 4m Co	olor	Control Contro	Dens (1 2 3 4 5 6 7 7 8 5 0 Dur Data Density ribution irde Size	tty Concee 171 172 172 174 174 174 174 174 174 177 177	1.10 2.20 3.30 5.50 6.60 6.60 11.00 tors	
Zm Am	olor Coi Coi exematic	Control Contro	Dens 0 1 2 3 4 5 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	ty Concer 171 171 172 226 174 174 174 ty Concer 177 174 174 174 174 174 174 174 174 174	1.10 2.20 3.30 4.40 5.50 6.60 9.90 11.00 tors	
Co Kin	Coor Coor Coor	Contu Maximum tour Distance Analysis	Density C C C C C C C C C C C C C	ty Concerning 1171 171 172 226 174 174 174 107 107 107 107 107 107 107 107	1.10 2.20 3.30 5.50 6.60 7.70 8.80 9.90 11.00 tors	
Zm 3m 4m Co	loor Cor cor cate mematics	Control Contro	Densi (1 2 2 3 4 4 5 6 6 7 8 5 6 6 7 8 5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ty Concer 171 172 174 174 174 174 174 174 174 174 174 174	trations 1.10 2.20 3.30 4.40 5.50 6.60 9.90 9.90 9.90 0.00 9.90 0.00 9.90 0.00 9.90 0.00 9.90 0.00 9.90 0.00 9.90 9.00 9.90 9.000 9.00 9	
Zm 3m 4m Co	Cor Cor Cor Cor Cor Cor Cor Cor Cor Cor	Control Contro	Dense C C C C C C C C C C C C C	ty Concer 171 172 226 174 174 174 177 226 177 206 177 206 177 206 177 206 177 206 177 206 177 206 176 176 176 176 176 176 176 17	110 2.20 3.30 5.50 6.60 7.70 8.80 9.90 11.00 tors	
Zm 3m 4m Co	Con Con Con Spee Dip I Frictio	Contri Contri Maximum	Dens C C C C C C C C C C C C C	tty Concer 171 172 172 172 172 172 172 174 177 177 177 177 177 177 177	strations 1.10 2.20 3.30 4.40 6.60 9.90 11.00 tors	
Zm 3m 4m Co Kin Slop	lion Con Con Con Con Con Con Con Con Con C	Cont Maximum Maximum Analysis Jope Dip Direction an Angle	Dens C C C C C C C C C C C C C	ty Concer 171 172 226 174 174 174 177 177 177 177 177	110 2.20 3.30 5.50 6.60 7.70 8.80 9.90 11.00	
Zm 4m 4m Co Kin Slop	Cor Cor Cor Cor Cor Cor Cor Cor Cor Cor	Contro Contro Maximum atour Dist Munting C Analysis Direction on Angle	Density 1 2 3 4 5 6 7 7 8 8 8 6 7 7 8 8 8 6 7 7 8 8 8 8 7 8 8 8 8	tty Concest 171 172 172 172 172 172 172 177 177	trations 1.10 2.20 3.30 4.40 5.50 6.60 8.80 9.90 11.00 tors	96
Zm 3m 4m Co Co	Cor Cor Cor Cor Cor Cor Cor Cor Cor Cor	Control Contro	Dens C C C C C C C C C C C C C	113 171 172 173 171 226 174 175 174 175 174	trations 1.10 2.20 3.30 5.50 6.60 7.70 8.80 9.90 11.00 10.00 Total 10	
Zm 4m 4m Co Co	Cor Cor Cor Cor Cor Cor Cor Cor Cor Cor	Control Contro	Density 1 2 3 4 5 5 6 7 7 8 5 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 9 8 9	III 171 172 174 174 174 174 174 174 174 174	trations 1.10 2.20 3.30 5.50 5.50 9.90 9.90 9.90 0.00 5.50 5.5	76

285 TALU

226

Ņ

S

W

Symbol	Featu	re					
	Critical	Interse	ction	_			
Color			D	ensi	ty Concer	trations	
		-		0	.00 -	1.70	
				1	.70 -	3.40	
				3	.40 -	5.10	
				5	.10 -	6.80	
				6	- 08.	8.50	
				10	20 -	11.00	
				11	90 -	13.60	
				13	.60 -	15.30	
				15	.30 -	17.00	
		Conte	our Da	ta	Pole Vect	tors	
	Ma	ximum	Densi	ty	16.32%		
	Conto	ur Dist	ributi	on	Fisher		
	Cour	ting C	irde Si	ze	1.0%		
Kinem	atic Ar	alysis	Wed	je S	liding		
	Slop	oe Dip	45				
Slope D)ip Dire	ection	125				
Fr	iction	Angle	35°				
					Critical	Total	%
		We	dge Slic	ling	4	231	1.73%
Co	or	Dip		Dij	Direction	Label	
			User	Plan	es		
1		45			125	TALUD	1
		м	lean Se	et P	lanes		
1m		88			36		
2m		2			247		
		P	ot Mo	de	Pole Vect	ors	
		Vecto	or Cou	nt	22 (22 E	ntries)	
	Int	ersectio	on Mo	de	Grid Data	Planes	
	Inter	section	ns Cou	nt	231		
		Her	nisphe	re	Lower		
		Pr	ojecti	on	Equal Ang	ple	

Symi	bol Feat	ure					
	Critic	al Interse	ction				
	Color	T	De	nsit	y Concer	trations	
				0.0	0 -	1.60	
				1.6	0 -	3.20	
				3.2	0 -	4.80	
				4.8	0 -	6.40	
				0.9	0 -	8.00	
				9.6	0 -	11 20	
				11.2	0 -	12.80	
				12.8	0 -	14.40	
				14.4	0 -	16.00	
		Conto	our Data	3	Pole Vect	ors	
		laximum	Densit	1	15.26%		
	Cont	tour Dist	ribution	1	Fisher		
	Cou	inting C	ircle Size	8	1.0%		
×	linematic A	Analysis	Direct	Тор	pling		
	Sk	ope Dip	60				
S	ope Dip Di	rection	148				
	Friction	n Angle	35°				
	Latera	Limits	20°				
					Critical	Total	%
	Direct Top	pling (Int	ersectio	n)	0	66	0.00%
	Oblique Top	pling (Int	ersectio	n)	4	66	6.06%
		Base	Plane (A	J)	1	12	8.33%
	Color	Dip		Dip	Direction	Label	
	1		User Pl	ane	5	101	
1		60		_	148	TALUE)
		м	ean Set	Pla	ines		
1m		81		_	229		
2m		51		_	210		
		Pl	ot Mod	e	Pole Vect	ors	
		Vecto	or Coun	t	12 (12 E	itries)	
	In	tersectio	on Mode	8	Grid Data	Planes	
	Inte	ersection	s Coun	t	66		
		Her	nisphen	e :	Lower		

		_		_			
Symbol	Featu	ne		_			
0	Critical	Interse	ction	_			
Color			De	ensi	ty Concer	trations	
				0.	- 00	1.60	
				1.	60 -	3.20	
				3.	20 -	4.80	
				4.	80 -	6.40	
				ь.	40 -	8.00	
				8.	.00 -	9.60	
					- 00	12.00	
				12	20 -	14.40	
				14	40 -	16.00	
		Conte	our Dat	ha	Pole Vect	tors	
	Ma	ximum	Densi	v	15.26%		
	Conto	ur Dist	ributio	'n	Fisher		
	Coun	ting C	ircle Si	te	1.0%		
Kiner	atic Δn	alvsis	Wedd	e S	idina		
	Slor	e Din	60	-	,		
Slope	Dip Dire	ction	148				
F	riction J	Angle	35°	-			
					Critical	Total	%
		We	dge Slid	ing	8	66	12.12%
Co	lor	Dip		Dip	Direction	Label	
		-	User F	lan	es		
1		60		_	148	TALUD	
		м	ean Se	t P	anes		
1m		81			229		
2m		51			210		
		Pl	ot Mod	le	Pole Vect	ors	
		Vecto	or Cour	۱t	12 (12 E	ntries)	
	Inte	ersectio	on Mod	le	Grid Data	Planes	
	Inter	section	is Cour	nt	66		
		Her	nisphe	re	Lower		
		Pr	ojectio	n	Equal Any	ple	

S

Symt	loc	Featu	re							
		Critica	Interse	ection						
	Color			ity Conc	entrations	0				
			-	0.00 - 1.70						
				1	.70 -	3.40				
				3	.40 -	5.10				
				5	.10 -	6.80				
				6	- 08.	8.50				
				8	-50 -	10.20				
				10. 11. 13.		11.90				
						13.60				
						15.30				
			Cont	15 our Data	Bole Ve	17.00				
Conto				Density	16 02%					
Contour Did				ribution	ibution Erbar					
Contour Dist				inde Size	Parter					
	_	cour	rung c	ircle size	1.0%					
ĸ	inen	atic A	nalysis	oping						
Slope Dip				88						
Slope Dip Direction				180						
Friction Angle 35°										
	1	ateral	Limits	20°						
					Critical	Total	%			
	Dire	ct Topp	ling (Int	47	820	5.73%				
0	Obliqu	le Topp	ing (In	39	820	4.76%				
			Base	Plane (AI)	13	41	31.719			
		3	Base Pla	9	9	100.00				
		3	Base Pla	2	5	40.009				
	Co	olor	Dip	Di	p Directi	on Labe	1			
	-	_		User Plan	nes					
1			88		180	TALU	D			
			м	lean Set P	lanes					
1m			78	78 182						
2m			8	8 82						
			P	ot Mode	Pole Ve	ctors				
				41 (41	Entrine)					
			Vecto	or Count	41 /41	citures)				

Symbo	al I	Feature								
8	1.4	Critical Intersection								
Color Density Concentrations										
			0	- 00.	1.70					
			1	.70 -	3.40					
			3	.40 -	5.10					
				.10 -	6.80					
				.80 -	8.50					
			8	.50 -	10.20					
			10	00	12.60					
			13	60 -	15.30					
			15	.30 -	17.00					
		Cont	our Data	Pole Vect	ors					
		Maximum	Density	16.03%						
	(Contour Dist	ribution	Fisher						
		Counting C	ircle Size	1.0%						
Kir	nema	tic Analysis	Wedge S	Sliding						
Slope Dip			88							
Slope Dip Direction			n 180							
	Fric	tion Angle	35°							
				Critical	Total	%				
		We	dge Sliding	326	820	39.76%				
	Colo	r Dip	Dij	p Direction	Label					
		- C.	User Plan	nes						
1		88	4	180	TALU)				
		м	lean Set P	lanes		-				
1m		78 182								
2m		8		82						
		PI	Pole Vectors							
		Vecto	41 (41 Entries)							
		Intersection	Grid Data Planes							
		Intersection	820							
		Her	Lower							
		De	Equal Angle							

LOB01

