Escuela Superior Politécnica del Litoral

Facultad de Ingeniería en Ciencias de la Tierra

Caracterización geológica de nuevas fuentes de aprovechamiento de material pétreo en el sector urbano de la isla Santa Cruz - Galápagos

Proyecto Integrador

Previo la obtención del Título de:

Ingeniero Geólogo

Presentado por:

Jhoselyn Alejandra Tipán Martínez

Guayaquil - Ecuador

Año: I PAO 2023

El presente proyecto se lo dedico a mi familia, quienes han sido mi pilar fundamental en este arduo camino; en especial se lo dedico a mi pequeño Nicolás, quien día a día me llena de amor, valor y fuerza.

.

Hoy agradezco a Dios y a la vida por las personas que ha puesto en mi camino, que sin duda han marcado mi estancia estudiantil. Agradezco a mi tutor de tesis que ha estado presente en este largo camino universitario, a mis compañeras y compañeros que han sido de gran apoyo. Muchas gracias a todos los que han sido parte de este proceso, siempre quedarán en mi corazón. "Los derechos de titularidad y explotación, me corresponde conforme al reglamento de propiedad intelectual de la institución; Jhoselyn Tipán doy mi consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Tipán Jhoselyn

Evaluadores

MSc. David Altamirano Profesor de la materia PhD. Maurizio Mulas

Tutor del proyecto

MSc. Daniel Garcés

Cotutor del proyecto

RESUMEN

El presente proyecto forma parte de un trabajo multidisciplinario: "Estudio para la definición de posibles áreas de explotación de materiales pétreos de sectores poblados de Santa Cruz, Galápagos", el cual incluye otros campos relacionados con Ciencias de la Tierra como la Minería y la Ingeniería Civil. Específicamente, este trabajo de materia integradora busca proporcionar nuevas fuentes de material pétreo de la isla Santa Cruz, con el propósito de satisfacer demandas sociales y económicas de la población, que por el acelerado crecimiento poblacional ha producido aumento en la demanda de recursos pétreos, lo que ha llevado al agotamiento de las fuentes locales. Para ello, se realizó trabajos de campo de donde se obtuvo muestras representativas de los conos, imágenes de dron para futura cuantificación de recursos explotables y análisis de laboratorios necesarios para caracterizar los conos como: granulometría, morfología, densidad y abrasión de Los Ángeles. El estudio indicó que los conos son depósitos estratificados con tamaño de clastos variables entre cenizas y lapilli hasta bloques. Los clastos son compactos y representan el 64% en volumen de las muestras, son angulosos, evidencian baja esfericidad, vesículas casi circulares e incluso, el material presenta un porcentaje de desgaste del 38%. El estudio revela que el material más sustentable a explotar como recurso pétreo es el lapilli y que se ubicaron 14 conos monogenéticos en el área de estudio. Los conos presentan pendientes inclinadas y pendientes escarpadas a muy escarpadas. Además, el porcentaje de abrasión indica que el material es óptimo para su utilización en construcción de carreteras.

Palabras Clave: Recurso pétreo, granillo, granulometría, morfología, geología.

ABSTRACT

This project is part of a multidisciplinary work: "Study for the definition of possible areas of exploitation of stone materials in populated sectors of Santa Cruz, Galapagos", which includes other fields related to Earth Sciences such as Mining and Civil Engineering. Specifically, this work seeks to provide new sources of stone material from Santa Cruz Island, with the purpose of satisfying social and economic demands of the population. This is due to the continues growing up of population that produced an increase in the demand for stone resources, which has led to the depletion of local sources. For this purpose, field work was carried out to obtain representative samples of the cones, drone images for future quantification of exploitable resources and laboratory analyses necessary to characterize the cones, such as: granulometry, morphology, density, and abrasion of Los Angeles. The study indicated that the cones are stratified deposits with variable clasts size between ash and lapilli. The clasts are compact and represent 64% in volume of the samples, they are angular, show low sphericity, almost circular vesicles and even the material presents a percentage of wear of 38%. The study reveals that the most sustainable material to exploit as a stone resource is lapilli and that 14 monogenetic cones were in the study area. The cones present steep slopes and steep to very steep slopes. The percentage of abrasion indicates that the material is optimal in road construction.

Keywords: Stone resource, granule, granulometry, morphology, geology.

Tabla de contenido

Resu	umen .		٧I
Abst	ract	V	/
Tabla	a de c	ontenidoV	
Abre	viatura	as	×١
Simb	ología	۹X	(]]
Índic	e de fi	gurasX	
Índic	e de ta	ablasX	٧I
CAP	ÍTULC) 1	.1
1.	Introd	ducción	.1
1.1.	Desc	ripción del problema	.3
1.2.	Justif	ïcación del problema	.4
1.3.	Objet	tivos	.5
1.	3.1.	Objetivo general	.5
1.	3.2.	Objetivos específicos	.5
1.4.	Marc	o teórico	.5
1.	4.1.	Geomorfología	.5
1.	4.2.	Granulometría	.6
1.	4.3.	Morfología1	0
1.	4.4.	Densidad1	1
1.	4.5.	Ensayo de abrasión de Los Ángeles1	2
1.5.	Marc	o Legal1	3
CAP	ÍTULC) 21	5
2.	Zona	de estudio1	5
2.1.	Marc	o tectónico – Estructural1	6
2.2.	Marc	o Geológico2	20

2.3.	Conc	9S2	1		
CAPÍ	PÍTULO 325				
3.	Datos y métodos25				
3.1.	Fase	de diseño2	5		
3.2.	Meto	dología2	7		
3.2	2.1.	Fase de Investigación previa2	8		
3.2	2.2.	Fase de Campo3	2		
3.2	2.3.	Fase de laboratorio3	5		
3.3.	Equip	DOS4	4		
CAPÍ	TULC	9 44	6		
4.	Resu	ltados4	6		
4.1.	DEM	de conos4	7		
4.2.	Desc	ripción de conos4	7		
4.3.	Análisis de pendientes				
4.4.	Análi	sis granulométrico5	2		
4.5.	Morfo	blogía6	2		
4.6.	Resu	Itados de densidad de los clastos6	9		
4.7.	Resu	Itados de análisis de abrasión de los ángeles7	1		
CAPÍ	TULC) 57	2		
5.	Análi	sis de resultados7	2		
5.1.	Análi	sis de la descripción de conos7	2		
5.2.	Análisis morfológicos				
5.3.	Análisis granulométricos73				
5.4.	Análi	sis de densidades:7	5		
5.5.	Análi	sis del ensayo de abrasión de los ángeles7	6		
CAPÍ	TULC	967	7		
6.	Conc	lusiones y recomendaciones7	7		

6.1.	Conclusiones	.77
6.2.	Recomendaciones	.77
Refe	rencias	.79
Anex	COS	.85

ABREVIATURAS

CGREG	Consejo de Gobierno del Régimen Especial de Galápagos
DEM	Modelo Digital de Elevación
DPNG	Dirección del Parque Nacional Galápagos
ESPOL	Escuela Superior Politécnica del Litoral
GADMSC	Gobierno Autónomo Descentralizado Municipal de Santa Cruz
INEC	Instituto Nacional de Estadística y Censos
LOREG	Ley Orgánica de Régimen Especial de la Provincia de Galápagos
PDOT	Plan de Desarrollo de Ordenamiento Territorial
UNESCO	Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura
UTM	Universal Transversal de Mercator
WGS	World Geodetic System

SIMBOLOGÍA

Art.	Artículo
ha	Hectárea
km	Kilómetro
Ма	Millones de años
km ³	Kilómetro cúbico
m	Metro
Phi	φ
cm/año	Centímetro por año
E-O	Este-Oeste
km ²	Kilómetro cuadrado
NE	Noreste
O-NO	Oeste-Noroeste
AI_2O_3	Óxidos de Aluminio
Kg	Kilogramo
g	gramo
ml	miligramo
mm	milímetro
cm	centímetro
μM	Micrómetro
g/cm ³	gramos por centímetros cúbicos
°C	Grados centígrados

ÍNDICE DE FIGURAS

Figura 1. Escala de tamaño de partículas de Udden-Wentworth	7
Figura 2. Ilustración gráfica de las clases del índice de clasificación	8
Figura 3. Ejemplos de distribuciones con asimetrías diferentes	9
Figura 4. Ejemplo de distribuciones con curtosis con referencia al modelo normal	10
Figura 5. Ilustración de clases morfológicas	11
Figura 6. Esquema de clasificación de Sneed y Folk	11
Figura 7. Clasificación de moda	12
Figura 8. Localización de Santa Cruz en el Archipiélago de Galápagos	15
Figura 9. Mapa simplificado de la región de Galápagos que muestra la ubicación de los	
principales accidentes volcánicos	17
Figura 10. Mapa de las Islas Galápagos	18
Figura 11. Mapa conceptual que evidencia las fases del trabajo realizadas	27
Figura 12. Mapas de ubicaciones de los 14 conos hallados en la tesis de Muzzio y Piedra	
(2018)	29
Figura 13. Mallado para el levantamiento topográfico con dron	30
Figura 14. Cuadrícula utilizada para campo	31
Figura 15. <i>Trabajo en campo</i>	33
Figura 16. Preparación del dron para la toma de datos	35
Figura 17. Proceso de preparación de muestras para el ensayo granulométrico	36
Figura 18. Granulometría	37
Figura 19. Uso del analizador láser de partículas	38
Figura 20. Proceso para el análisis morfológico	39
Figura 21. Proceso del método de la parafina	41

Figura 22. Ejecución del ensayo de abrasión de los ángeles	43
Figura 23. <i>Modelo de los conos 2 y 3</i>	46
Figura 24. <i>Modelo de los conos 7 y 11</i>	47
Figura 25. DEM en las minas Granillo Rojo y Granillo Negro	47
Figura 26. Imagen tomada en campo del cono 11	48
Figura 27. Columna estratigráfica de la mina Granillo Negro	50
Figura 28. Columna estratigráfica de la mina Granillo Rojo	51
Figura 29. Mapa de pendientes de los conos 3 y 9	52
Figura 30. Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-01	53
Figura 31. Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-05	54
Figura 32. Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-06	55
Figura 33. Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-07	56
Figura 34. Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-08	57
Figura 35. Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-09	58
Figura 36. Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-10	59
Figura 37. Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-11	60
Figura 38. Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-12	61
Figura 39. Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-15	62
Figura 40. Diagrama de barras de densidades en función de la frecuencia de clastos de la	
muestra CVG-01	69
Figura 41. Diagrama de barras de densidades en función de la frecuencia de clastos de la	
muestra CVG-02	70
Figura 42. Diagrama de barras de densidades en función de la frecuencia de clastos de la	
muestra CVG-11	70

Figura 43. Diagrama de barras de densidades en función de la frecuencia de clastos de la
muestra CVG-0271
Figura 44. Resumen de resultados de morfología en el diagrama ternario de Sneed y Folk,
simplificado por Cioni (citado en Mulas et al., 2016)
Figura 45. Resumen de morfología basado en las clases de Sneed & Folk en un diagrama de
barras
Figura 46. Diagrama de barras de densidades en función de la frecuencia de clastos de las
muestras analizadas

ÍNDICE DE TABLAS

Tabla 1. Clases del índice de selección	8
Tabla 2. Clases del índice de asimetría	9
Tabla 3. Clasificación de la curtosis	10
Tabla 4. Gradación del material	13
Tabla 5. Carga abrasiva a utilizar dependiendo de la gradación del material	13
Tabla 6. Descripción de conos monogenéticos presentes en la zona poblada de la isla San	ta
Cruz	21
Tabla 7. Matriz para elección de alternativas	27
Tabla 8. Tabla de búsqueda bibliográfica	28
Tabla 9. Tabla de las muestras obtenidas en campo con su respectiva ubicación	34
Tabla 10. <i>Equipos</i>	44
Tabla 11. Conclusión de los resultados estadísticos gráficos de la muestra CVG-01 para	
ensayos de granulometría	53
Tabla 12. Conclusión de los resultados estadísticos gráficos de la muestra CVG-05 para	
ensayos de granulometría	54
Tabla 13. Conclusión de los resultados estadísticos gráficos de la muestra CVG-06 para	
ensayos de granulometría	55
Tabla 14. Conclusión de los resultados estadísticos gráficos de la muestra CVG-07 para	
ensayos de granulometría	56
Tabla 15. Conclusión de los resultados estadísticos gráficos de la muestra CVG-08 para	
ensayos de granulometría	57
Tabla 16. Conclusión de los resultados estadísticos gráficos de la muestra CVG-09 para	
ensayos de granulometría	58

Tabla 17. Conclusión de los resultados estadísticos gráficos de la muestra CVG-10 para
ensayos de granulometría59
Tabla 18. Conclusión de los resultados estadísticos gráficos de la muestra CVG-11 para
ensayos de granulometría60
Tabla 19. Conclusión de los resultados estadísticos gráficos de la muestra CVG-12 para
ensayos de granulometría61
Tabla 20. Conclusión de los resultados estadísticos gráficos de la muestra CVG-15 para
ensayos de granulometría62
Tabla 21. Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-01
Tabla 22. Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-02
Tabla 23. Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-03
Tabla 24. Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-05
Tabla 25. Tabla de resultados de los análisis de laboratorio de morfología de la muestra CVG-
0765
Tabla 26. Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-08
Tabla 27. Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-09
Tabla 28. Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-10

Tabla 29. Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-11
Tabla 30. Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-12
Tabla 31. Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-15
Tabla 32. Tabla de resultado del ensayo abrasión de los ángeles
Tabla 33. Resumen de resultados estadísticos gráficos de los ensayos de granulometría74
Tabla 34. Resumen de densidades en las muestras analizadas

CAPÍTULO 1

1. INTRODUCCIÓN

Las Islas Galápagos están ubicadas aproximadamente a 1000 km al oeste de la costa ecuatoriana en el Océano Pacífico, están conformadas por 13 islas de origen volcánico que componen un archipiélago (Espín et al., 2022). Son la manifestación superficial de una pluma del manto que lleva activa alrededor de 14.5 millones de años (Wilson et al., 2022). Las islas Galápagos son conocidas a nivel internacional por su flora y fauna única, por lo que fueron designadas Patrimonio Natural de la Humanidad, Reserva de la Biósfera de la UNESCO y Sitio Ramsar en los años 1976, 1984 y 2001, respectivamente (UNESCO, 2018).

En 1832, las islas Galápagos fueron anexadas al Ecuador y el mismo año comenzó su colonización. Según el censo poblacional del INEC en el 2015, Galápagos tuvo una población de 25244 habitantes residentes y en la actualidad tiene un incremento poblacional del 7.1%, lo que, sumándole al crecimiento de la oferta y demanda turística, agrava el requerimiento de recursos limitados de las islas, como son los recursos pétreos.

Anteriormente se construía con arena de playas cercanas a la población, lo que fue reemplazado por materiales pétreos que se extraen de minas a cielo abierto. En las Galápagos existen cinco sitios de extracción de material pétreo, siendo el "granillo" (escorias volcánicas) el principal material que se extrae; se lo utiliza para beneficio de desarrollo social en mantenimiento y ejecución de obras como escuelas, vías, carreteas, entre otros (El Universo, 2018).

La explotación de los materiales pétreos por la creciente demanda de infraestructura turística y la provisión de servicios públicos ha producido deterioro de forma gradual de las minas, por lo que se prevé que estas se agoten en un corto plazo, forzando así, a las autoridades a buscar nuevas fuentes de material pétreo (Rueda y Sevilla, 2022). Debido a las explicaciones previamente mencionadas, este trabajo se encuentra dentro de un enfoque multidisciplinario más amplio, el cual incluye otros campos relacionados con las Ciencias de la Tierra, como la Minería y la Ingeniería Civil. El desarrollo de este proyecto busca proporcionar nuevas fuentes de material pétreo autóctono de la isla Santa Cruz, con el propósito de satisfacer demandas sociales y económicas de la población. Para lograr esto, se considera dos alternativas viables para adquirir este recurso: extracción local e importación desde el Ecuador continental.

1.1. Descripción del problema

Las islas Galápagos son referentes de turismo a nivel global, debido a que presentan altos niveles de endemismo y biodiversidad. En consecuencia a su fama, la inmigración ha sido una de las presiones que las islas afrontan y que causan impactos graves en sus ecosistemas.

La inmigración y las altas tasas de turismo en Santa Cruz demandan incrementos, cantidad y calidad de servicios. Necesidades que no tienen respuestas de las entidades gubernamentales debido a falta de recursos. Esta situación ha generado dificultades en la cobertura de estos servicios frente los efectos colaterales del crecimiento poblacional.

Este acelerado crecimiento está produciendo un aumento en la demanda de recursos pétreos, lo que ha llevado al gradual agotamiento de las fuentes locales, como las minas de Granillo Rojo y Granillo Negro presentes en la isla Santa Cruz.

El problema implica considerar tanto la necesidad de proveer de estos recursos para las obras civiles como la preservación del ecosistema único de Galápagos. Existen algunas restricciones que se deben de tomar en cuenta frente a la necesidad de abastecer a la isla de recursos pétreos, como lo son: el impacto ambiental, la prohibición de la extracción de recursos pétreos en áreas protegidas y la zonificación de la isla (área del Parque Nacional y área colonizada).

Se requiere encontrar soluciones que minimicen el impacto ambiental y promuevan la conservación de la flora y fauna en la isla. Este estudio busca identificar opciones viables que permitan satisfacer la demanda de recursos pétreos sin comprometer la integridad ecológica del archipiélago.

1.2. Justificación del problema

Según el Plan de Desarrollo de Ordenamiento Territorial (PDOT) del Cantón Santa Cruz 2012 - 2027 "el archipiélago es una zona netamente volcánica, compuesta por una base de rocas basálticas y pequeños conos de lava" (Gobierno Autónomo Descentralizado Municipal de Santa Cruz [GADMSC], 2013, p.46). Actualmente en Santa Cruz, se utiliza material volcánico denominado "granillo" como material de construcción, lo cual se extrae de minas a cielo abierto de conos volcánicos.

En el artículo 258 de la Constitución de la República del Ecuador (2008), se establece que "su planificación y desarrollo se organizará en función de un estricto apego a los principios de conservación del patrimonio natural del Estado y del buen vivir, de conformidad con lo que la ley determine" (p.127). Santa Cruz tiene la mayor densidad poblacional y comercial de las islas, su población y turismo siguen en constante crecimiento. En marzo del 2023 se registraron cifras récord de arribos de turistas a las islas, el 24% más que en el 2019 (Ministerio de Turismo, 2023).

El incremento turístico y poblacional genera una alta presión en el ecosistema: invasiones biológicas, mayor uso de territorio y, por ende, mayor requerimiento de recursos. Por lo que, el desafío es cada vez más grande, a más de conservar la condición natural de las islas, se debe de garantizar el bienestar de su población en términos de salud y seguridad económica (Consejo de Gobierno del Régimen Especial de Galápagos [CGREG], 2021).

Actualmente, existe una fuerte demanda de materiales pétreos, por lo tanto, la Dirección del Parque Nacional Galápagos (DPNG) autoriza y regula la extracción de estos recursos. En Santa Cruz, en el área del Parque Nacional se ubican las minas: Granillo Rojo y Granillo Negro. Esta situación ha generado disminuciones significativas en la duración de las fuentes actuales, de modo que, existe una mayor necesidad para autorizar nuevas fuentes de obtención del recurso.

1.3. Objetivos

1.3.1. Objetivo general

Proponer alternativas de abastecimiento de material pétreo en el sector urbano de la isla Santa Cruz, mediante caracterización topográfica y geológica, para suplir las necesidades sociales de extensión urbanística de la ciudad.

1.3.2. Objetivos específicos

- Determinar diferentes opciones de material pétreo para definir la opción más sustentable.
- ii. Generar un mapa de ubicación de conos monogenéticos presentes en el sector urbano de la isla Santa Cruz para la futura explotación de recursos pétreos.
- iii. Caracterizar geomorfológicamente los conos monogenéticos presentes en la isla
 Santa Cruz mediante material fotográfico tomado por drones y satélites.
- iv. Determinar las propiedades de los materiales pétreos mediante caracterización física de laboratorio.

1.4. Marco teórico

1.4.1. Geomorfología

Existen diferentes tipos de morfologías volcánicas en Ecuador, pero este trabajo solo se enfocará en los más relevantes para el estudio. Los volcanes se clasifican en dos principales grupos: monogenéticos y poligenéticos. Los volcanes monogenéticos fueron creados durante un único evento eruptivo (que puede durar de semanas a años), mientras que los volcanes poligenéticos experimentaron más de un evento eruptivo con varios años de inactividad (Atlas de rocas ígneas, 2015).

Conos de escoria: Son conos monogenéticos de pequeñas dimensiones que se construyeron por la acumulación de fragmentos de lava (Atlas de rocas ígneas, 2015). Se forman en erupciones estrombolianas o hawaianas de magma basáltico de baja viscosidad (Sigurdsson et al., 1999).

Conos de toba: Son conos volcánicos monogenéticos formados a partir de erupciones muy explosivas que se dan con la interacción de magma basáltico y agua. (Atlas de rocas ígneas, 2015; Toulkeridis, 2011).

Volcán de escudo: Los volcanes de escudo son formados por la acumulación de lavas fluidas. Son estructuras volcánicas poligenéticas que tienen forma similar a un escudo y presentan pendientes suaves de máximo 7° (Sieron, 2008).

1.4.2. Granulometría

La granulometría es la distribución en porcentaje de los diversos tamaños del agregado en una muestra (Corral, 2012). Por ello, el análisis granulométrico es el conjunto de técnicas utilizadas para determinar el tamaño de partícula de una muestra de sedimentos (Pérez y Márquez, 2017). Para analizar la granulometría, se usa una escala granulométrica, que es una división de un intervalo continuo de clases. Se utilizó la escala de Udden - Wentworth (Figura 1) que se encuentra en unidades de milímetros y phi (ϕ). En ella, $\phi = -log_2 X$, donde *X* es el tamaño de grano en mm (Boggs, 2009).

Figura 1.

ESCALA DE TAMAÑO										
	Phi (m.m)		Micras µ							
	PEÑASCO	-8	1	256						
0	GUIJARRO	-7	Ŧ	128						
м	ΜΑΤΑΤΕΝΙΑ		Ī	64 32 16			LARGA	∢		
	CRÉNULO		ŧ	8 4			MEDIA	GRAV		
	MUY GRUESA	-1	+	2	_		FINA	Ĩ		
¥	GRUESA	0 1 2 3 4 5 6 7	t	1	-	1000	GRUESA			
Į į	MEDIA		1	2	Т	2		500	MEDIA	₹
AF	FINA		I	4	, _	125.0	FINA	1 He		
	MUY FINA		I.	8	10	62.5	MUY FINA	₹		
LIMO	GRUESO MEDIO FINO MUY FINO			1 12 1 21 21 22 1 22	20	31.3 15.6 7.8	LIMO			
GRUESA MEDIA V FINA WUY FINA		8 9 10 11 12		1 1024 1 1096	00	3.9 1.95 0.98 0.49 0.24	ARCILLA	A		

Escala de tamaño de partículas de Udden-Wentworth

Nota. Tomada de Pérez y Márquez (2017).

Parámetros estadísticos granulométricos

En la presente investigación, se trabajó con el proceso de tamizado para análisis granulométrico. Ahora bien, para la interpretación de resultados se debe de conocer los siguientes términos:

Media: Indica el tamaño de las partículas de la muestra, que depende de la velocidad de la corriente o de la turbulencia del transporte, es decir, de la cantidad de energía distribuida al sedimento (Folk, 1974).

Índice de selección o clasificación (*sorting*): Proporciona el grado de uniformidad del tamaño de las partículas en el sedimento.

Figura 2.

Ilustración gráfica de las clases del índice de clasificación

Nota. Tomado de Universidad de Alicante (2020).

Tabla 1

Clases del índice de selección

Índice de selección (σ) Límites de clase	Descripción	
< 0.35	Muy bien clasificado	
0.35 - 0.50	Bien clasificado	
0.50 - 0.70	Moderadamente bien clasificado	
0.70 - 1.00	Moderadamente clasificado	
1.00 - 2.00	Mal clasificado	
2.00 - 4.00	Muy mal clasificado	
> 4.00	Extremadamente mal clasificado	

Nota. Tabla tomada de Santillán et al. (2009).

Índice de asimetría (skewnees): Indica el comportamiento de la distribución con

respecto a la media, manifestando la clasificación en las colas de la gráfica estadística (Figura

3). Si la muestra presenta un exceso de partículas finas, entonces, se dice que la distribución

granulométrica es asimétrica a las partículas finas (Tabla 2) o sesgada fina (Boggs, 2009).

Tabla 2

Clases del índice de asimetría

Índice de asimetría (Sk) Límites de clase	Descripción
+1.00 a +0.30	Muy asimétrico hacia las partículas finas
+0.30 a +0.10	Asimétrico hacia las partículas finas
+0.10 a -0.10	Simétrico
-0.10 a -0.30	Asimétrico hacia las partículas gruesas
-0.30 a -1.00	Muy asimétrico hacia las partículas gruesas

Nota. Tomado de Santillán et al. (2009).

Figura 3.

Ejemplos de distribuciones con asimetrías diferentes

Nota. a) Asimetría negativa. b) Asimetría positiva. c) Histograma simétrico. Tomado de Alperin (2013).

Curtosis: Mide cuán achatada está una distribución con respecto al modelo Normal y muestra la densidad de datos que se encuentra cerca a la media. Se divide en platicúrtica, mesocúrtica y leptocúrtica (Figura 4). Si la curva presenta picos pronunciados, es leptocúrtica; en cambio, si presenta picos planos, es platicúrtica (Alperin, 2013).

Figura 4.

Ejemplo de distribuciones con curtosis con referencia al modelo normal

Nota. a) Mesocúrtico o normal. b) Leptocúrtico. c) Platicúrtico. Tomado de Alperin (2013).

Tabla 3

Clasificación de la curtosis

Curtosis (<i>k</i>) Límites de clase	Descripción	
< 0.67	Muy platicúrtica	
0.67 - 0.90	- 0.90 Platicúrtica	
0.90 - 1.11	Mesocúrtica	
1.11 – 1.50	Leptocúrtica	
1.50 - 3.00	Muy leptocúrtica	
> 3.00	Extremadamente leptocúrtica	

Nota. Tomado de Santillán et al. (2009).

Según Folk (1974), los depósitos de múltiples fuentes indican asimetría y curtosis pronunciadas, mientras que los de una sola fuente son mesocúrticas, es decir, generan curvas normales.

1.4.3. Morfología

La morfología de una partícula es la suma de las características superficiales de los granos sedimentarios (Dumitriu et al., 2011). Para el presente trabajo, se utilizó el esquema de clasificación de Sneed y Folk (Figura 6), simplificado por Cioni (como se citó en Mulas et al., 2016). Este grafica relaciones entre los ejes de los clastos y propone 4 clases morfológicas: compacto, planar, laminar y alargado o elongado (Figura 5).

Figura 5.

Ilustración de clases morfológicas

Nota. Tomado de Mulas et al. (2016).

Figura 6.

Esquema de clasificación de Sneed y Folk

Nota. Tomado de (tomado de Mulas et al., 2016). a: eje x del clasto, b: eje y, c: eje z.

1.4.4. Densidad

Para el análisis de densidad, se utilizó el método de la parafina para hallar la densidad aparente, considerando el volumen ocupado por el agregado y no por la matriz del suelo (Grossman y Reinsch, 2018). Los resultados se presentan en gráficos de barras que ilustran rangos de densidades en función de la frecuencia. Para su interpretación, se utilizó el parámetro estadístico "moda", que es el valor que más se repite en un conjunto de datos. Este se clasifica en unimodal, bimodal y multimodal, como se muestra en la Figura 7 (Mendoza, 2019).

Figura 7.

Clasificación de moda

Nota. a) Distribución unimodal, b) distribución modal y c) distribución multimodal. Tomado de (Statologos, 2022).

1.4.5. Ensayo de abrasión de Los Ángeles

El ensayo de abrasión de los ángeles es una medida de la degradación de los materiales pétreos. Determina la resistencia al desgaste de un agregado grueso, mediante el uso de la máquina de abrasión de Los Ángeles, que contiene un número específico de esferas de acero (Ugur et al., 2010). Este porcentaje de desgaste sirve como indicador de calidad del material.

Se utiliza una gradación definida para realizar este ensayo (Tabla 4) y una determinada cantidad de cargas abrasivas (Tabla 5).

Tabla 4

Tamaño	del tamiz		Masa de	la carga	
Basa	Retiene -	Gradación			
Fasa		Α	В	С	D
$1 \frac{1}{2}$ "	1 "	1250 ± 25	-	-	-
1 "	3/4"	1250 ± 25	-	-	-
3/4"	¹ / ₂ "	1250 ± 10	2500 ± 10	-	-
¹ / ₂ "	³ / ₈ "	1250 ± 10	2500 ± 10	-	-
3/8"	1/4"	-	-	2500 ± 10	-
1/4 "	No. 4	-	-	2500 ± 10	-
No. 4	No. 8	-	-	-	5000 ± 10
Total		5000 ± 10	5000 ± 10	5000 ± 10	5000 ± 10

Gradación del material

Nota. Tomado del repositorio del Laboratorio de Geotecnia y Construcción (2021).

Tabla 5

Carga abrasiva por utilizar, dependiendo de la gradación del material

Gradación	No. de esferas	Masa de la carga (g)
А	12	5000 ± 25
В	11	4584 ± 25
С	8	3330 ± 20
D	6	2500 ± 15

Nota. Tomado del repositorio del Laboratorio de Geotecnia y Construcción (2021).

1.5. Marco Legal

El artículo 242 de la Constitución de La República Del Ecuador (2008) dispone que la

organización territorial se dividirá en regiones, provincias, cantones y parroquias rurales.

Además denomina a Galápagos como régimen especial.

Según el Plan Galápagos 2030 del Consejo de Gobierno del Régimen Especial de

Galápagos (2021):

El régimen especial de Galápagos se define como el territorio insular con particularidades de índole ambiental, social y económicas, que mantiene un sistema de gobierno con una administración con autonomía política y financiera debido principalmente a su aislamiento geográfico que le da estas particularidades únicas en el mundo. (p.23)

En el artículo 406 de la Constitución de la República del Ecuador (2008), se establece que "el Estado debe de regular la conservación, manejo y uso sustentable, recuperación y limitaciones de dominio de los ecosistemas frágiles y amenazados" (p.181). Además, el art. 258 determina que la planificación y desarrollo deberá organizarse estrictamente bajo los principios de conservación del patrimonio natural del Estado y del buen vivir (Constitución de La República Del Ecuador, 2008).

El art. 407 de la Constitución prohíbe la extracción de recursos no renovables en áreas protegidas y en zonas intangibles (Constitución de la República del Ecuador, 2008). Pero, el art. 7 del Estatuto Administrativo del Parque Nacional Galápagos decreta que se permite la extracción de recursos pétreos, de acuerdo con la zonificación establecida en el Plan de Manejo del Parque Nacional Galápagos.

Según el PDOT del Cantón Santa Cruz, el Gobierno Autónomo Descentralizado de Santa Cruz, que ejerce su ámbito de acción en el cantón, tiene como misión impulsar el desarrollo humano sustentable. Para ello debe basarse en un nuevo modelo de gestión, fundamentado en los principios de solidaridad, subsidiaridad, equidad territorial, integración y participación ciudadana, con el fin de lograr el buen vivir de los habitantes del cantón (GADMSC, 2013).

CAPÍTULO 2

2. ZONA DE ESTUDIO

El archipiélago de Galápagos se encuentra ubicado en la línea ecuatorial a 972 km al oeste de la costa sudamericana del Pacífico. Está conformado por 13 islas de las cuales 4 están pobladas: San Cristóbal, Santa Cruz, Isabela y Floreana. El proyecto propuesto se centra en la isla Santa Cruz (Figura 8), ubicada en el centro del archipiélago, en las coordenadas UTM Datum WGS 84 (9930292 E, 793853 S, 15S). Se trata de un escudo elíptico de suave pendiente que se eleva a 950 metros sobre el nivel del mar (White et al., 1993).

Figura 8.

Localización de Santa Cruz en el Archipiélago de Galápagos

2.1. Marco tectónico – Estructural

Las plumas del manto dominan la evolución volcánica y tectónica de los ejes de dorsal que se encuentran cerca de la litosfera suprayacente (Ito et al., 2003). Las Islas Galápagos son la manifestación de una pluma del manto que ha estado activa durante al menos 14,5 millones de años (Wilson et al., 2022). El archipiélago de Galápagos, está situado sobre la placa de Nazca que se desplaza en dirección hacia el este a 5.1 cm/año. (Argus et al., 2011).

Todo inició con la ruptura de la placa de Farallón, que dio inicio a la expansión oceánica y la apertura de la dorsal de Cocos-Nazca, creando así las placas de Cocos y Nazca. La interacción de esta dorsal y el punto caliente de Galápagos, construyó las cordilleras volcánicas submarinas de Carnegie y Cocos. La orientación de las cordilleras es un indicador de la dirección del movimiento de las placas con relación al punto caliente (Sallarés et al., 2009).

El Centro de Propagación de Galápagos (CPG) es donde las placas de Nazca y Cocos divergen. Es una dorsal de expansión moderadamente rápida que se desplaza a 6 cm/año; tiene una tendencia este-oeste. En los últimos 5–6 millones de años se ha alejado del punto caliente. En la actualidad se encuentra entre 150 y 300 km al norte del archipiélago (Figura 9) (Wilson et al., 2022).

Figura 9.

Mapa simplificado de la región de Galápagos que muestra la ubicación de los principales accidentes volcánicos

Nota. Tomado de Mittelstaedt et al. (2012).

Antes de que el CPG migre se situaba sobre el punto caliente. Contribuía con su magma a la producción de las dorsales de Carnegie y Cocos, en las placas de Nazca y Cocos (White et al., 1993). Cuando se formaron las islas centrales y orientales, el CPG estaba más cerca de la pluma de las Galápagos (Mittelstaedt et al., 2012).

La mayoría de las islas orientales están cortadas por fisuras y fallas, con orientación E-O, a diferencia de las estructuras caldéricas de los escudos jóvenes de las islas occidentales. Las principales islas orientales del archipiélago de Galápagos son: Pinzón, Rábida, Santiago, Santa Cruz, Floreana, Santa Fe, San Cristóbal y Española (Figura 10) (Wilson et al., 2022).

El centro de la pluma de Galápagos, actualmente, se encuentra entre los volcanes Fernandina y Cerro Azul, de donde, aproximadamente 150 km aguas abajo se encuentra la isla Santa Cruz (Wilson et al., 2022). Santa Cruz es la segunda isla más grande del archipiélago con una superficie aproximada de 1000 km² (Wilson et al., 2022).

Figura 10.

Mapa de las Islas Galápagos.

92°W 91°W 4091°W 20' 91°W 90°W 40'90°W 20' 90°W 89°W 40'89°W 20' 89°W

Nota. Los volcanes occidentales están etiquetados en blanco, en negro los de la provincia intermedia y oriental. Falla de Transformación de Galápagos (GTF). Tomado de Harpp y Geist (2018).

La historia constructiva de Santa Cruz ha estado controlada en gran medida por su proximidad al CPG, a diferencia de los jóvenes escudos occidentales. Santa Cruz se formó cuando el CPG estaba más cerca de la pluma de lo que está hoy, lo que dio lugar a una mayor interacción pluma-borde y al transporte de material de la pluma a la dorsal (Wilson et al., 2022).
Al ser la mayor isla del centro del archipiélago, Santa Cruz ofrece la oportunidad de documentar cómo maduran las islas oceánicas al ser arrastradas aguas abajo desde una pluma del manto. Schwartz (2014), concluye que, Santa Cruz ha experimentado dos periodos de vulcanismo y dos periodos de actividad tectónica desde que el volcán migró hacia el este desde el centro del punto caliente durante al menos 1 millón de años (Schwartz et al., 2022; Wilson et al., 2022).

1. Formación de "Serie de plataforma" con sólo un volumen trivial de actividad. Estas consisten en lavas expuestas principalmente a lo largo de la costa noreste de Santa Cruz, así como en las islas Baltra y Seymour. Las lavas de la Serie de Plataforma son flujos gruesos de pahoehoe, algunas intercaladas con depósitos de playa y de aguas poco profundas (Wilson et al., 2022).

2. Falla normal de las Series de Plataforma, se encuentran expuestas en la parte NE de la isla y solo atraviesan las lavas de las series de plataforma. Son fallas más antiguas formadas como consecuencia de la extensión regional al principio de la construcción de la isla (Schwartz et al., 2022; Wilson et al., 2022).

3. Formación de la "Serie de Escudo" que se encuentra depositado a lo largo del flanco sur de la isla. La Serie de Escudo consiste predominantemente en flujos de pahoehoe erupcionados desde el sistema de fisuras con dirección O-NO que divide la isla (Wilson et al., 2022).

 Formación de fallas en el flanco sur. Son las fallas más jóvenes, se formaron contemporáneamente con la Serie Escudo. Estas fallas se atribuyen a la extensión hacia el sur de la isla causada por intrusiones magmáticas orientadas E-O (Schwartz et al., 2022; Wilson et al., 2022).

2.2. Marco Geológico

Las islas orientales tienen un relieve bajo en comparación a los escudos occidentales, se caracterizan por sistemas lineales de fumarolas en las cumbres y carecen de calderas (Schwartz et al., 2022). Estas destacan por sus numerosos conos monogenéticos de escoria y toba (Harpp y Geist, 2018). Santa Cruz es un escudo elíptico con forma de placa invertida y pendientes suaves, que se eleva a 950 m sobre el nivel del mar (Herrera et al., 2022). A lo largo de un sistema de fisuras axiales, se alinean una serie de características topográficas: conos piroclásticos juveniles y cráteres de fosa, con dirección O-NO, que definen la cumbre del volcán (Herrera et al., 2022). La isla está cortada por una serie de fallas con dirección E-O que son visibles a lo largo de las costas noreste, este y sur. Las islas adyacentes de Baltra y Seymour son bloques de fallas simples (Harpp y Geist, 2018; White et al., 1993).

Bow (1979) dividió las lavas de Santa Cruz en: una Serie de Plataforma y una Serie de Escudo, las cuales definen la estratigrafía volcánica de la isla. La Serie de Plataforma es más antigua y ocurre principalmente en el noreste de la isla; constituye todo Baltra y Seymour. La plagioclasa con olivino subordinado domina el conjunto de fenocristales en las lavas de la Serie de la Plataforma (Schwartz et al., 2022). En las lavas de la Serie de Escudo, predominan los basaltos alcalinos de transición. Son petrográficamente diversas e incluyen conjuntos dominados sólo por olivino y plagioclasa, así como lavas afíricas (Schwartz et al., 2022; White et al., 1993).

La falta de tendencias dominantes en las lavas de las series de Plataforma o de Escudo sugieren que debe de haber un conjunto de composiciones de fundido primario y profundidades de generación de fundido dentro de estas series (Wilson et al., 2022). Las lavas de Santa Cruz definen dos amplias tendencias: tendencia positiva que refleja el control por fraccionamiento de clinopiroxeno, que incluye la mayoría de las lavas de la Serie de Escudo y la tendencia menos profunda, definida por las lavas de Plataforma, que ha experimentado menos fraccionamiento de clinopiroxeno (Wilson et al., 2022).

La alta abundancia modal de plagioclasa y los elevados contenidos de Al₂O₃ en las lavas de la Serie de Escudo, indican que ha habido acumulación de plagioclasa (Wilson et al., 2022). En contraste, los bajos contenidos de Al₂O₃ en la Serie Plataforma indican un mayor control por fraccionamiento de plagioclasa.

Harpp y Weis (2020) trazaron el límite entre las zonas altamente enriquecidas y las menos enriquecidas al oeste de Santa Cruz. Las lavas más antiguas de la Serie de Plataforma fueron emplazadas cuando Santa Cruz estaba situada en el borde oriental de la zona fuertemente enriquecida de la pluma (donde hoy se encuentra la costa oriental del Volcán Alcedo) (Harpp y Weis, 2020). Las composiciones de estas lavas de 1,6 a 1,1 Ma no están tan enriquecidas como el material que erupciona hoy en día en Fernandina, por lo que, reflejan la transición entre la zona enriquecida occidental y la oriental, menos enriquecida (Harpp y Weis, 2020).

2.3. Conos

Para el presente trabajo, se tomó como referencia el proyecto integrador de Muzzio y Piedra (2018), donde se identifica y describe 14 conos que se encuentran dentro de la zona poblada de Santa Cruz, como se muestra indica en la Tabla 6:

Tabla 6

Descripción de conos monogenéticos presentes en la zona poblada de la isla Santa Cruz

Cono	Descripción	V±δV	
	Cono 1: Cono de toba con dos cráteres. Los diámetros son de ~50m y ~70m. La altura media del cono es ~40m.	6676,686 ± 79,414	

Cono	Descripción	V±δV
445	Cono 2: Cono de toba. Sus dimensiones son de ~60m de altura, con un perfil alto y una pendiente fuerte (>25°). Tiene un cráter con diámetro ~200m	5150,711 ± 3,327
3 005	Cono 3: Cono con tendencia a la circularidad, sin presencia de cráteres. Caracterizado como un cono de toba. Tiene dos elevaciones de material de ~50m y ~20m.	5950,667± 34,759
	Cono 4: Cono de escoria de ~20m de altura y ~300m de diámetro. Presenta forma irregular y yace sobre una plataforma de pendiente suave o plana (<4.9°).	1106,453 ± 1,100
	Cono 5: Anillo de toba, sus dimensiones se encuentran en el rango de 20 a 40m de altura, presenta un cráter con diámetro ~110m.	4105,485 ± 421,216
	Cono 6: Cono de escoria con presencia de un cráter. Localizado sobre una superficie irregular donde el material se acumuló a favor de la pendiente. Sus dimensiones corresponden a ~40m de altura y ~300m de diámetro.	2263,016± 3,522
	Cono 7: Cono de toba con cráter con ~80m de altura media y ~200m de diámetro. Sus flancos presentan pendientes fuertes (>25°).	15549,93 ± 352,709

Cono	Descripción	V±δV
525	Cono 8: Cono de escoria, su material se ha deformado a favor de la pendiente que yace. Su altura es de ~40 m y su diámetro ~160m. El material que se acumuló en zona de pendiente tiene un área aproximada de 60x20 m ² .	993,084 ± 39
80 00 80 80 400 400 400 400 400 400 400	Cono 9: Alineación de conos y hornitos. Las alturas se encuentran en el rango de 10 a 60m.	833,107± 4,562
	Cono 10: Anillo de toba circular. El cráter tiene un diámetro ~80 m y tiene una altura ~20 m.	833,107± 4,562
	Cono 11: Alineación de conos y hornitos con cráteres en la parte superior o techo y en la base. Con ~30m y ~70m, de diámetro respectivamente. Las alturas varían de 20 a 60 m.	11973,862± 286,947
b	Cono 12: Alineación de conos y hornitos. Sus dimensiones varían de 10 a 50m en altura y de 20 a 200m en diámetro.	9969,676± 63,883
	Cono 13: Cono de escoria de ~100 m de altura y ~400 m de diámetro. Su material se ha acumulado a favor de una pendiente que va de suave (5- 9°) a intermedia (9-17°). Presencia de un cráter en el tope de ~200m de diámetro.	9081,218 ± 27,777

Cono	Descripción	V±δV
	Cono 14: Cono de escoria de ~60m de altura y ~400m de diámetro. Posicionado sobre zona de pendiente plana a suave (<4.9°).	5378,797±33,784

Nota. Tabla tomada del proyecto integrador de Muzzio y Piedra (2018).

CAPÍTULO 3

3. DATOS Y MÉTODOS

3.1. Fase de diseño

Para el problema de desabastecimiento de recursos pétreos en la Isla Santa Cruz, se presentaron 3 alternativas diferentes de solución: (1) importación de materiales pétreos desde Ecuador continental, (2) extracción de material pétreo desde depósitos de flujos de lava y (3) extracción del material pétreo de conos de escoria.

La importación de recursos pétreos desde Ecuador continental se plantea como una solución, pero, hay que tomar en cuenta el riesgo que conlleva esta alternativa, debido a que podría alterar la fragilidad del ecosistema de Galápagos, tanto en sus ambientes marinos como terrestres. Según el Plan de Manejo de las áreas protegidas de Galápagos para el Buen Vivir, es fundamental evitar la introducción de especies invasoras debido a que pueden provocar una reorganización drástica de los ecosistemas de Galápagos.

Según el Plan Galápagos 2015-2020, el transporte de carga desde Ecuador continental hacia la provincia de Galápagos, es el que abastece a las islas de productos de primera necesidad, del sector de la construcción y los demás sectores productivos. De la misma forma, es una de las actividades que más impacto genera, es el medio más propicio para el ingreso de especies exógenas y organismos exóticos a las islas, convirtiéndose en un potencial riesgo para la salud humana, la economía, las actividades agrícolas y ganaderas, la integridad ecológica de los ecosistemas marinos e insulares, así como para la biodiversidad.

La Ley Orgánica de Régimen Especial de la Provincia de Galápagos (LOREG) en el Art. 92 literal i), prohíbe el ingreso de materiales geológicos a las islas, además, en la "Lista de productos, subproductos y derivados de origen vegetal y animal reglamentados para el ingreso a la provincia de Galápagos", en el apartado de "Productos no permitidos", se encuentra "Tierra y arena" con código 438, debido a que son productos altamente agresivos y pueden transportar plagas y enfermedades, de acuerdo a la resolución No.D-ABG-02408-2016.

La segunda alternativa es la extracción de materiales pétreos desde depósitos de flujos de lava. Las lavas basálticas son recomendadas para la construcción de pavimentos y concretos hidráulicos debido a sus características mecánicas: presenta alta resistencia a la compresión, es poroso y resistente a la abrasión (Arqhys Decoración, 2019; Maldonado, 2023). Para su extracción, se utiliza el método de voladura con explosivos para el quebrantamiento del material in-situ. Por lo que, esta alternativa queda sin validez, ya que por normativa y temas de conservación no se puede utilizar materiales explosivos dentro de las islas. Muzzio y Piedra (2018) indican que dentro del sector urbano de la isla, se encontró 3 flujos de lava de pequeñas dimensiones, por lo que se los descarta para explotación de recursos.

La tercera opción es la extracción de materiales pétreos de conos de escoria. Según el Art. 407 de la Constitución de la República del Ecuador está prohibida la explotación minera en áreas protegidas, pero, Galápagos es una excepción. El PNG desde 1974 ha dado facilidades para la explotación de estos recursos mediante la emisión de permisos de extracción, debido a que en Galápagos no existe otro lugar para extraer material pétreo, además, de que no se puede traer este material desde el continente ecuatoriano. La escasez de este material hace que exista mayor presión para que se autoricen nuevos lugares.

De las tres alternativas la que mejor se adapta al plan sustentable de Galápagos es la extracción del material pétreo de conos de escoria (Tabla 7). Por lo que en base a esta elección se desarrolla el proyecto.

26

Tabla 7

Matriz para elección de alternativas

	Importación desde el Ecuador Continental	Extracción de depósitos de flujo de lava	Extracción de conos de escoria
Legal	Х	Х	si
Información geológica	si	Х	si
No permite el ingreso de especies	Х	si	si
Fácil acceso al transporte	Х	si	si
Total	1	2	4

Nota. En la matriz: si cumple y x no cumple.

3.2. Metodología

El proyecto consiste en tres fases que se especifican en la Figura 11:

Figura 11. Mapa conceptual que evidencia las fases del trabajo realizadas

3.2.1. Fase de Investigación previa

La primera fase abarca desde la búsqueda bibliográfica hasta la planificación de campo.

La búsqueda bibliográfica, permitió entender la historia, lo que se encontraría en la isla, su

geomorfología y posibles lugares en dónde se podría encontrar el material pétreo.

3.2.1.1 Búsqueda de bibliografía

La búsqueda bibliográfica se realizó a partir de artículos, publicaciones científicas, libros y el proyecto integrador de Muzzio y Piedra (2018). Durante la búsqueda bibliográfica se tomaron en cuenta áreas como la petrología, geoquímica, geomorfología y volcanología de Galápagos. En la Tabla 8 se muestran algunas de las fuentes relevantes de información consultadas.

Tabla 8

Tabla de búsqueda bibliográfica

Área	Fuentes relevantes	
Geomorfología	Geist, Dennis; White, William; Albaréde, Francis; Harpp, Karen. (2002) Volcanic evolution in the Galapagos: The dissected shield of volcan Ecuador. Geochemistry, Geophysics, Geosystems, Volumen 3. https://doi.org/10.1029/2002GC000355	
	Mouginis-Mark, Peter; Rowland, Scott; Garbeil, Harold. (1996). Slopes of western Galapagos from airborne interferometric radar. Geophysical Research Letter, Volumen 23. https://doi.org/10.1029/96GL03280	
Geoquímica	Wilson, Emily; Harpp, Karen; Schwartz, Darin; Van Kirk, Rita; (2022). The Geochemical Evolution of Santa Cruz Island, Galápagos Archipelago. Frontiers in Earth Science, Volumen 10. https://doi.org/10.3389/feart.2022.845544	
Petrología	McBirney, Alexander y Williams, Howell. (1969). Geology and petrology of the Galapagos Islands. Geological Society of America.	
	Harpp, Karen y Geist, Dennis. (2018). The Evolution of Galápagos Volcanoes: An Alternative Perspective. Frontiers in Earth Science, Volumen 6. https://doi.org/10.3389/feart.2018.00050	
Vulcanología	Schwartz, Darin; Harpp, Karen, Kurz, Mark; Wilson, Emily; Van Kirk, Rita. (2022). Low-volume magmatism linked to fank deformation on Isla Santa Cruz, Galápagos Archipelago, using cosmogenic 3 He exposure and 40 Ar/39 Ar dating of fault scarps and lavas. Bulletin of Volcanology, Volumen 84. https://doi.org/10.1007/s00445-022-01575-3	
	Geist, Dennis y Naumann, Peter. (1998). Evolution of Galapagos Magmas: Mantle and Crustal Fractionation without Assimilation. Journal of Petrology, Volumen 39, 953–971. https://doi.org/10.1093/petroj/39.5.953	

En el trabajo de Muzzio y Piedra (2018) se ubicó 14 conos monogenéticos en Santa Cruz, fuera del área protegida del Parque Nacional de Galápagos (Figura 12), y seleccionó un total de cinco conos como propensos a ser explotados, teniendo como criterio la mayor cantidad de volumen en unidades cúbicas.

Figura 12.

Mapas de ubicaciones de los 14 conos hallados en la tesis de Muzzio y Piedra (2018)

Nota. Tomado de (Muzzio y Piedra, 2018).

Para la elección de conos relevantes para este trabajo, se basó en el proyecto integrador de Muzzio y Piedra (2018), de donde se eligieron los conos con mayor volumen en unidades cúbicas y de fácil acceso: cono 2, cono 3, cono 4, cono 7, cono 9, cono 10, cono 11, cono 12 y cono 13, al igual que las dos minas presentes en la isla: Granillo rojo y Granillo negro.

Se prosiguió con la planificación de la salida de campo, donde se preparó: permisos necesarios para poder tomar datos en campo, mallado para el levantamiento topográfico con dron (Figura 13), plan de muestreo detallando los conos que se iban a muestrear y los posibles caminos que facilitarían nuestro acceso.

Figura 13.

Mallado para el levantamiento topográfico con dron

Previo al trabajo de campo se realizó un plan de muestreo para cada cono, utilizando imágenes satelitales de SAS PLANET, donde se buscó imágenes actuales y con menor nubosidad del área de estudio. Se señalizó la carretera principal, las calles accesibles mediante

vehículo y además se identificó senderos de tierra aptos para recorrer a pie. Se buscó cortes en la carretera alrededor del cono y posibles estructuras donde se podrían encontrar muestras.

3.2.1.3 Planificación de la cuadrícula de sobrevuelo

Con el fin de mejorar el análisis geomorfométrico realizado por Muzzio y Piedra (2018), se planificó la captura de imágenes en campo mediante la utilización de dos vehículos aéreos no tripulados (VANT), también conocidos comúnmente como "drones". Además, se planificó una cuadrícula compuesta por cuadrantes de 600 x 600 m, la disposición de cada cuadrante se planificó para que abarque la mayor área posible de los conos teniendo en cuenta la autonomía de las baterías. Se cubrió cada cono con la menor cantidad de cuadrantes posibles (Figura 14). El programa utilizado para ubicar la cuadrícula y generar el mapa fue ArcGIS Pro.

Figura 14.

Cuadrícula utilizada para campo

Nota. Para el cono 3 se necesitó 6 cuadrantes para cubrirlo en su totalidad, mientras que para conos más pequeños como el cono 4 se necesitó 2 cuadrantes. El cráter completo de cada cono se lo ajustaba en un cuadrante.

3.2.1.4 Planes de vuelo

Se planificó qué conos visitar y las áreas que se abarcaría cada día. Para ejecutar los planes de vuelo se utilizaron dos modelos VANT y las aplicaciones eran acorde a cada modelo: DronDeploy para el Mavic 2 Pro y Pix4DCapture para el Phantom. La ejecución de los vuelos estaba condicionada por factores climáticos, como la velocidad del viento y la nubosidad. Para evaluar las condiciones de vuelo se utilizó la aplicación "UAV Forecast", debido a que los aspectos climáticos podían reducir el tiempo de vuelo del dron y aumentar la posibilidad de pérdida.

3.2.2. Fase de Campo

La segunda fase del estudio se enfocó en el trabajo en campo y la recolección de datos. Durante el trabajo de campo se describió la estratigrafía del cono en macro y meso escala (donde se anotó la gradación de las capas, el color de los clastos, la vesicularidad, entre otras características estratigráficas). Asimismo, se realizaron mediciones el espesor del estrato en campo, se crearon columnas estratigráficas y se realizó un registro fotográfico del estrato para documentar de forma efectiva sus características destacables.

3.2.2.1 Recolección de las muestras

En campo se recolectaron muestras de diferentes conos de escoria y 2 minas (Granillo rojo y Granillo negro), ubicados en la parte alta de la isla (Figura 15). En total se recolectaron 25 muestras cada una con pesos entres 0,4 a 9,5 kg (Tabla 9). Además, en la mina Granillo Rojo se recolectaron muestras de minerales.

Figura 15.

Trabajo en campo

Nota. a) Recolección de muestras, b) toma de referencia del granillo y c) toma para referencia y escala del depósito.

La recolección de muestras en los conos se vio limitada por la presencia de capas de laterita y material meteorizado, así como la abundante vegetación. Fue necesario encontrar puntos donde la capa de material meteorizado tuviera menor grosor, de manera que se pudiera acceder a la roca y tomar muestras. En los puntos de muestreo se obtuvieron: observaciones de campo, fotografías, coordenadas UTM, y la construcción de una columna estratigráfica.

Tabla 9

Punto	Lugar	Coord. X	Coord. Y	Muestra
1	Cono 11	789903	9929359	CVG - 01
				CVG - 01 Morfo
2	Cono 12	791507	9928809	CVG – 02
3	Cono 12	791581	9928804	CVG – 03
4		796974	9936530	CVG – 04
	-	796994	9936459	CVG – 05
	-	796994	9936459	CVG - 05 Morfo
	-			CVG – 06
5		796895	9936507	CVG – 07
	Granillo			CVG - 07 Morfo
	Negro	793227	9931922	CVG – 08
				CVG - 08 Morfo
6		796992	9936463	CVG – 09
				CVG - 09 Morfo
7		796895	9936507	CVG – 10
				CVG - 10 Morfo
8		793227	9931922	CVG – 11
				CVG - 11 Morfo
9		793332	9931799	CVG – 12
				CVG - 12 Morfo
	Cranilla Daia			CVG - 12
				Minerales
10		793291	9931755	CVG – 13
11		793231	9931750	CVG – 14
13		793211	9931892	CVG – 15
				CVG - 15 Morfo

Tabla de las muestras obtenidas en campo con su respectiva ubicación.

Nota. Sistema de coordenadas UTM WGS84 15S.

3.2.2.2 Levantamiento topográfico con dron

Para volar el dron, se subió al cono lo más alto posible para obtener mejor cobertura y visibilidad, además de reducir posibles obstrucciones o colisiones con objetos cercanos (Figura 16). Se tenía en cuenta que se elevara 100 metros desde la cima del cono y que siguiera el

plan de vuelo. A través de la aplicación del dron PIX4D se podía ver la vista desde la cámara, la cantidad de fotos tomadas y el tiempo restante de vuelo.

Figura 16.

Preparación del dron para la toma de datos

Nota. a) Salida del dron. b) Manejo para el aterrizaje del dron.

3.2.3. Fase de laboratorio

3.2.3.1 Cuarteo de muestras

Este método tiene como objetivo reducir las muestras obtenidas en campo a una muestra representativa que se aproxime a 1 kg. Se utilizó un cuarteador mecánico y dos contendores para la muestra; se vertió la muestra de campo uniformemente en toda la longitud del cuarteador, a una velocidad que permitía el flujo constante de la muestra por los conductos (Figura 17a). Aproximadamente, la muestra caía en los contenedores en cantidades iguales (50% de la muestra en cada contenedor), la muestra de un contenedor se utilizaba para volver a cuartear y la otra se guardaba.

Se realizó este método las veces que fueran necesarias hasta llegar a un peso de 1kg de muestra (se cuarteó 2 veces cada muestra). Luego de esto, se puso la muestra reducida en una bandeja, se etiquetó y se la llevó al horno a 110° C por 24 horas (Figura 17b).

Figura 17.

Proceso de preparación de muestras para el ensayo granulométrico

Nota. a) Cuarteo de muestras. b) Uso del horno de secado con la muestra reducida.

3.2.3.2 Granulometría

Se procedió a determinar la distribución granulométrica de la muestra en acuerdo a la escala del Phi (- log^2 diámetro en mm). Se utilizaron 9 tamices de diferentes aberturas, organizados en orden creciente, desde -4ϕ a $+4\phi$ (8mm a 64 micrones). Primero, se sacó la muestra del horno y se la dejó a temperatura ambiente alrededor de 5 minutos; en ese tiempo se procedía a pesar cada uno de los tamices.

Luego, se anotó el peso bruto de la muestra (peso de la muestra en la bandeja de secado). Se utilizó un contenedor graduado para tomar datos de volumen de la muestra, primero se pesó el contenedor vacío, luego se vertió dentro la muestra, anotando el peso y el volumen de la muestra; se volvía a poner la muestra en la bandeja de secado y se repetía el proceso dos veces más, hasta tener tres pesos y volúmenes de la muestra en el contenedor.

Se procedió a tomar nuevamente el peso bruto de la muestra en la bandeja de secado (solían haber variaciones por la temperatura del ambiente). Se ordenó los tamices y se los ensambló en columna, siendo que en la parte superior estaba el tamiz de -4 ϕ y en la parte inferior (luego del tamiz de +4 ϕ) estaba un contendor llamado fondo que receptó la muestra más fina (<0,065 mm). Se puso la muestra en la parte superior de la columna (Figura 18a) y se lo llevó a la tamizadora durante 5 minutos.

Figura 18.

Granulometría

Nota. a) Se pone la muestra en la columna de tamices ordenados. b) Etiqueta de fundas para el material retenido en cada tamiz.

Se pesó cada tamiz con la cantidad de muestra que había retenido, anotándolo como peso bruto y guardando el material retenido en fundas etiquetadas con el nombre de la muestra y el número del tamiz (Figura 18b).

3.2.3.3 Granulometría fina

Para este procedimiento se trabajó con el material captado en el tamiz "fondo" (material <0,065 mm). Se utilizó un analizador de partículas por difracción láser (*Laser Scattering Particle Size Distribution Analyzer LA-300 – HORIBA*). El analizador láser se debe prender 20 minutos

antes de comenzar a utilizarlo. Como primer paso, en la computadora, en el programa *"Keyspam Serial Assistant"* en la pestaña *"Port mapping"* se cambió la opción que estaba, se esperó 30 segundos y se lo volvió a cambiar a *COM 1*.

Pasados los 20 minutos de haber prendido el analizador, se procedió a entrar en el programa "LA-300" (Figura 19 a), donde ajustamos el tamaño de las mallas, se puso nombre de la muestra y se ajustó el RR índex en 1,569 (índice de refracción del lapilli) (Kuryaeva y Kirkinskii, 1997). Luego se procedía al botón *Measure*, hay que tomar en cuenta que antes de usar el analizador y luego de cada cambio de muestra se debe de limpiar el analizador con agua destilada con el botón *Drain* (Figura 19b).

Figura 19.

Uso del analizador láser de partículas

Nota. a) Ingreso y uso del software LA-300. b) Uso de agua destilada para limpiar el analizador láser.

Para comenzar a medir se ajustó la velocidad de centrifuga en 10 (velocidad estándar, que varía dependiendo como se comporte la muestra), antes de poner una pequeña porción de la muestra, se rota 20 veces la funda con la muestra dentro, para que se homogenice. De una muestra se debe de poner 6 porciones y por cada porción se hicieron 6 mediciones, en total por muestra se obtuvieron 36 resultados. Se debe de tener en cuenta que, en cada porción de muestra, luego de obtener los resultados y de guardarlos, se debe limpiar mínimo 2 veces el analizador; también es importante que luego de cada resultado obtenido, se borren los datos en el programa, para que no se sobrepongan. Cada que se ponía una porción de la muestra, se aseguraba que la transmitancia esté entre 90 y 92.

3.2.3.4 Análisis morfológicos

Para el análisis morfológico se prepararon las muestras de la siguiente manera: se tomó 100 clastos de cada muestra, se los lavó con agua para eliminar el exceso de sedimentos finos y luego se los ubicó en el horno de secado a 120°C por 24 horas. Se bosquejó una malla numerada en cartulina donde se ubicaron los 100 clastos de manera aleatoria de cada muestra. Se tomaron fotos de los clastos en grupos de nueve. Cada foto estaba acompañada de un membrete con el nombre de la muestra, la numeración de cada clasto, una escala y sus ejes visibles, como se muestra en la Figura 20.

Figura 20.

Proceso para el análisis morfológico

Nota. a) Ejemplo de cómo quedan ordenados los clastos en la malla, adicional se agrega una escala de referencia, el nombre de la muestra y un eje XY. b) Uso de ImageJ para medir los ejes X, Y, Z

Primero, se ubicaron los clastos para medir los *ejes xy*, para tomar la foto de los *ejes xz* se rotaron los clastos 90° con respecto a su *eje x* (Figura 20a). Con las fotos tomadas se utilizó el programa ImageJ para medir de cada clasto lo ejes x, y, z (Figura 20b). El *eje x* es el eje más largo del clasto, *el eje y* se encuentra perpendicular al eje x, mientras que *el eje z*, se lo obtuvo de las fotografías de *ejes xz*, tomándose su dato 90° con respecto al eje x.

3.2.3.5 Análisis de volumen y densidad aparente de los clastos

Para determinar las densidades aparentes de los clastos se usaron los mismos clastos del análisis morfológico y se procedió a utilizar el método de la parafina. Primero, cada uno de los clastos fueron pesados con una balanza de precisión de 0,1 g en seco.

Utilizando una olla de capping (Tabla 10) se derritió parafina hasta que alcanzara una temperatura aproximada de 60° C. Las técnicas para parafinar dependían del tamaño del clasto y el tamaño de sus vesículas. Los clastos más pequeños podían ser colocados con pinzas al fondo de la olla, donde inicialmente eran cubiertos por una delgada capa blanca traslúcida de parafina que eventualmente se quitaría y rellenaría sus poros (Figura 21b).

Una vez que el clasto ya no estaba cubierto por la capa blanca y ya no salían burbujas de aire de sus porosidades, se lo retiraba de la olla y se colocaba sobre papel aluminio, donde caía el exceso de parafina. Si el clasto presentaba vesículas no rellenas, se los corregía llenándolos con gotas de la parafina líquida. Para los clastos con vesículas más grandes, se disminuía la temperatura de la parafina y cuando una gruesa capa blanca de la parafina recubría cada clasto, se los retiraba de la olla. Luego, al enfriarse los clastos, se los volvía a sumergir en parafina caliente, para quitar así el exceso. El objetivo era llenar las porosidades para obtener un valor de volumen aparente más cercano a la realidad.

Figura 21.

Proceso del método de la parafina

Nota. a) Pesar los clastos con una balanza de precisión 0,1. b) Método de la parafina. c) Se vuelve a pesar los clastos parafinados. d) Sistema de medición para el peso hidrostático.

Una vez que todos los clastos estuvieron parafinados, se procedió nuevamente a pesarlos en la balanza con precisión de 0,1 g, tomando el registro de estos datos como *"Parafined weight*". En este proceso se revisaban los clastos para ver si se necesitaba cubrir más los poros.

Para el peso hidrostático, en un vaso Beaker de 2000 ml, se puso 1600 ml de agua destilada, para luego colocarlo encima de una balanza de precisión de 0,1 g, la cual se procedió a encerar (Figura 21 d). Se realizó un sistema donde a una manilla se le colocó un fino hilo, de manera tal que podía sostener el clasto. Luego, se sumergió por completo el clasto

en el agua destilada, el hilo debía estar lo más tensado posible y este peso se anotaba como *"Hydrostatic weight"*. La muestra al estar impermeabilizada por la parafina no debería expulsar burbujas, pero en caso de que esto ocurra, se deberá repetir el proceso de parafinación.

Durante el proceso de medición del peso hidrostático, se puede presentar el problema de los "clastos que flotan". Esto puede ocurrir por dos razones:

1. Al parafinar el clasto, los poros se rellenaron superficialmente, es decir, quedó un espacio de aire en el interior del clasto, permitiéndole ejercer fuerza (presión) sobre el agua y finalmente flotar.

2. Vesicularidad ciega en el núcleo del clasto, lo que impedirá que el aire salga, creando así, un efecto globo.

Una vez concluida la medición, se procedió a calcular el volumen aparente de los clastos de cada muestra, por lo que se utilizó la (3.1):

$$Parafined Weight - Hidrostatic Weight = Volume$$
(3.1)

El resultado es el peso que fue desplazado al sumergir la muestra (volumen). Para el cálculo de la densidad aparente, se utilizó la (3.2):

$$Weight/Volume = Density$$
 (3.2)

3.2.3.6 Ensayo de abrasión de Los Ángeles

Este ensayo tuvo como objetivo medir la degradación o desgaste de la muestra por medio de la abrasión al fin de determinar la calidad del material para usos civiles. Para preparar la muestra, se procedió a realizar granulometría utilizando los tamices de la tabla de gradación del material (Tabla 4); en este caso se utilizó la gradación B, por lo cual se usaron tamices de abertura: 3/4, 1/2 y 3/8. En bandejas separadas se puso el material retenido de los tamices

1/2 y 3/8 (alrededor de 2550 g de cada uno), para luego ser lavados (Figura 22b) y puestos en un horno de secado durante 24 horas a 110°C.

Figura 22.

Ejecución del ensayo de abrasión de los ángeles

Nota. a) granulometría de los agregados, b) lavar la muestra, c) la muestra con las cargas abrasivas en la máquina de abrasión y d) granulometría del material luego de sacarlo de la máquina.

Pasado el tiempo de secado, se procedió a pesar nuevamente cada parte de la muestra, para asegurarse que cada una contenga 2500±10 g, para luego juntarlas y volver a pesar (anotar como peso inicial Pi). Posteriormente se llevó la muestra a la máquina de abrasión y se pusieron 11 cargas abrasivas (Figura 22c); se aseguró la tapa de la máquina y durante 15 minutos la máquina realizó el proceso de desgaste (500 revoluciones en total).

Terminado el proceso, se retiran las cargas abrasivas y se voltea el tambor para que el material caiga sobre una bandeja. Todo el material se lo pasa por un tamiz número 12 (Figura 22d), el peso retenido se lava y se pone en el horno de secado durante 24 horas a 110°C. Luego, se toma el peso seco y se lo anota como peso final (Pf), para después calcular el porcentaje de desgaste con la (3.3).

$$\%Desgaste = \frac{Pi - Pf}{Pi} x100$$
(3.3)

3.3. Equipos

Los equipos que se utilizó en laboratorio se enlistan a continuación con su respectivos nombres, marcas y laboratorios al que pertenecen.

Tabla 10

Equipos

Nombre / Marca	Laboratorio	Equipos
Cuarteador mecánico	Laboratorio de Procesamiento de Minerales	
Tamices de diferentes tamaños <i>Test Sieve</i>	Laboratorio de Procesamiento de Minerales	
Sistema de purificación de agua Younglin - Basic 360 series	Laboratorio de Sanitaria	The second se
Balanza de precisión OHAUS	Laboratorio de Procesamiento de Minerales	

Nombre / Marca	Laboratorio	Equipos
Olla de capping	Laboratorio de Procesamiento de Minerales	
Tamizador vibratorio Retsch AS 200 Basic	Laboratorio de Procesamiento de Minerales	
Analizador de distribución granulométrica por dispersión láser HORIBA LA-300	Laboratorio de Procesamiento de Minerales	
Cargas abrasivas	Laboratorio de Geotecnia y Construcción	Charles Andrews
Máquina de abrasión ELE INTERNATIONAL	Laboratorio de Geotecnia y Construcción	
Tamiz metálico 1/2 y 3/8 ASTM E11	Laboratorio de Geotecnia y Construcción	
Balanza OHAUS/Champ	Laboratorio de Geotecnia y Construcción	

Nota. Se presenta una tabla con los materiales utilizados en laboratorio con sus respectivos

modelos y laboratorio al que pertenecen.

CAPÍTULO 4

4. **RESULTADOS**

4.1. DEM de conos

Con las capturas de imágenes realizadas con drones en campo (levantamiento topográfico), se obtuvo como producto ortofotos de alta resolución con tamaño de píxel 3x3 cm, que fueron empleadas para generar un Modelo Digital de Terreno (DEM, por sus siglas en inglés). De estos modelos se han calculado volúmenes en el proyecto integrador de Loayza y Quinde (2023). Cabe destacar que los conos monogenéticos analizados presentaron alturas que oscilaron entre 462 y 678 metros, siendo su forma más representativa la de herradura de caballo, como se ilustra en la Figura 23 y la Figura 24.

A continuación, se presentan los modelos de conos más representativos:

Figura 23.

Modelo de los conos 2 y 3

Cono 2

Cono 3

Figura 24.

Modelo de los conos 7 y 11

Figura 25.

DEM en las minas Granillo Rojo y Granillo Negro

4.2. Descripción de conos

Los conos encontrados en el sector urbano de la isla de Santa Cruz muestran una variabilidad a nivel de volumen, geometría y tipología de productos que lo constituyen.

Cono 11:

Macro: Depósito masivo de material fino y arcilloso, con presencia de bloques de lava en la parte superior con tamaños desde 0,25 m a 1,38 m. Clastos de colores marrones y naranjas producto de meteorización. *Meso:* Lapilli de tamaños variables entre 0,2 - 12 cm, presenta colores marronesanaranjados-ocre, hematita /oxido de manganeso, mal clasificado, muy angulosos, baja esfericidad, textura vesicular, presencia de iridiscencia (azul-violeta).

Figura 26.

Imagen tomada en campo del cono 11

Granillo negro:

Macro: Depósito estratificado con intercalaciones de ceniza y lapilli, con presencia de bombas centimétricas (Figura 27). Sus clastos son de color negro grisáceo, moderadamente clasificado. *Meso:* Depósito de 6.3 metros, donde se contabilizaron 6 estratos de base a techo: A, B, C, D, E, F.

A: Lapilli de grano fino, masivo, tonalidades grises a oscuras, plagioclasas, angulosos, baja esfericidad, mal clasificados, vesículas elongadas/redondeadas.

B: Ceniza gruesa, masiva, con tonalidad gris

C: Lapilli grueso y bombas centimétricas, masivo, tonos grisáceos, piroxenos y plagioclasas de mili a centimétricas, angulosos, baja esfericidad, mal clasificados, vesículas redondeadas y elongadas.

D: Lapilli de tamaño fino a grueso, gradación normal, tonalidades grisáceas-rojizas, plagioclasas y piroxenos, angulosos, baja esfericidad, moderadamente clasificados, vesículas redondeadas y elongadas.

E: Estratos de lapilli masivo y bombas centimétricas de 5 a 25 cm, tonalidades rojizasmarrones, plagioclasas-olivino y piroxenos de tamaño centimétricos de 2 a 7 cm, clastos subangulosos a angulosos, baja esfericidad, mal clasificados, vesicular (redondeada/elongada), presenta iridiscencia (tonos violetas).

F: Intercalaciones de ceniza (x5) y lapilli (x5). Lapilli: masivo, negro a gris oscuro, angulosos a muy angulosos, baja esfericidad, clasificación moderada, vesicular (redondeado), clastos elongados, presenta iridiscencia baja (azul oscuro) . Estratos de ceniza: Capas centimétricas de ceniza media a gruesa, color gris.

Granillo rojo:

Macro: Depósito estratificado. En la base se observa intercalaciones de lapilli y ceniza, hacia el techo se observa una capa de laterita y de lava. Color de clastos: rojizas y grisáceas. *Meso:* Depósito de 20 metros, donde se contabilizaron 5 estratos de base a techo: A, B, C, D, E, terminando con una capa de laterita y lava, como se puede observar en la Figura 28.

A: Lapilli, gradación normal, tonalidades rojizas, plagioclasas, clastos muy angulosos, baja esfericidad, mal clasificado, vesículas circulares poco elongadas.

B: Lapilli fino de 0.2 a 25 cm y bombas centimétricas, masivo, tonalidades grisáceas – rojizas, clastos angulosos, baja esfericidad, moderadamente clasificado, vesículas elongadas.

C: Lapilli fino de aproximadamente 2cm, masivo, tonalidades grisáceas – rojizas, plagioclasas y piroxenos, clastos angulosos, baja esfericidad, moderadamente clasificado, vesículas circulares poco elongadas.

D: Lapilli fino, estratificado con gradación inversa, tonalidades rojizas, plagioclasas, clastos angulosos, baja esfericidad, bien clasificado, vesículas poco elongadas.

E: Intercalaciones de lapilli (x5) y ceniza volcánica (x5). Lapilli: estratificado, tonalidad

gris oscuro, los clastos presentan iridiscencia baja (azul oscuro), plagioclasas y piroxenos,

clastos angulosos a muy angulosos, baja esfericidad, moderadamente clasificado, vesículas

circulares poco elongadas. Ceniza: capas centimétricas de ceniza media a gruesa, color gris.

Figura 27.

Columna estratigráfica de la mina Granillo Negro

Suelo

F: Intercalaciones de ceniza (x5) y lapilli (x5). Lapilli: masivo, negro a gris oscuro, angulosos a muy angulosos, baja esfericidad, clasificación moderada, vesicular (redondeado), clastos elongados, presenta iridiscencia baja (azul oscuro). Estratos de ceniza: Capas centimétricas de ceniza media a gruesa, color gris.

E: Estratos de lapilli masivo y bombas centimétricas de 5 a 25 cm, tonalidades rojizas-marrones, plagioclasas-olivino y piroxenos de tamaño centimétricos de 2 a 7 cm, clastos sub-angulosos a angulosos, baja esfericidad, mal clasificados, vesicular (redondeada/elongada), presenta iridiscencia (tonos violetas)

D: Lapilli de tamaño fino a grueso, gradación normal, tonalidades grisáceasrojizas, plagioclasas y piroxenos, angulosos, baja esfericidad, moderadamente clasificados, vesículas redondeadas y elongadas.

C: Lapilli grueso y bombas centimétricas, masivo, tonos grisáceos, piroxenos y plagioclasas de mili a centimétricas, angulosos, baja esfericidad, mal clasificados, vesículas redondeadas y elongadas.

B: Ceniza gruesa, masiva, con tonalidad gris

A: Lapilli de grano fino, masivo, tonalidades grises a oscuras, plagioclasas, angulosos, baja esfericidad, mal clasificados, vesículas elongadas/redondeadas.

Figura 28.

Columna estratigráfica de la mina Granillo Rojo

21.2 * * * * * * * * * * * * * * * * * * 20.8 20.4 20 19.6 19.2 0 0 0 0 18.8 18.4 18 C c 17.6 17.2 16.8 16.4 0 0 16 15.6 0 00 15.2 14.8 ٥ 14.4 00 ő °.0° 6 D 14 0 0 13.6 13.2 12.8 \bigcirc 0 С C \bigcirc C 12.4 0 0 U 00 J 0 C C 0 12 J U P Ο 0.0 -) 11.6 ٦ C 0 0 11.2 0 10.8 10.4 10 9.6 9.2 8.8 8.4 8 0 0 0 0 Ô 0 ٥ ٥ 0 0 Ô 0 ô 7.6 ۵ D D D D D D õ ٥ ٥ 0 0 ٥ ٥ 0 ٥ 0 0 ٥ ٥ 7.2 0 D D D D D D DD ۵ D ۵ ۵ 6.8 Ô ٥ 0 ٥ ٥ 0 ٥ ٥ Ô 0 0 Ô 6.4 Ô Ď Ď D D Δ Δ 6 ٥ 0 ٥ 0 ٥ ٥ 0 0 0 0 0 0 0 0 0 0 ٥ 0 0 ٥ ٥ Ô Ô Ô 0 Ô 5.6 Ď D D D D 5.2 ٥ ٥ ٥ ٥ 0 0 0 0 0 ٥ ٥ 0 ٥ ٥ DD DD 4.8 Δ D D D D D ۵ D 4.4 DD ۵ DO ۵ D D ٥ 4 ۵ 0 D ۵ DD 0 D ۵ Ď ۵ D D ٥ °Ó 0.0 3.6 C 00 Ó 00 \mathbf{C} Ó 0。 0 í۵ D 0 ^c 3.2 D ه ه D 00 D ٥ D 0 0 ۵ 0 ٥° Δ C 2.8 0 00 ۵ ٥ 0 0 0 2.4 2 ٥ 1.6 000 °° °° 000 D 000 1.2 8 0 D D 0.8 C 000 O C 0.4 0 O C Õ 0

Lava Laterita

۵

Ĉ

E: Intercalaciones de lapilli (x5) y ceniza (x5). Lapilli: estratificado, tonalidad gris oscuro, clastos presentan iridiscencia baja (azul oscuro), plagioclasas y piroxenos, clastos angulosos a muy angulosos, baja esfericidad, moderadamente clasificado, vesículas circulares poco elongadas. Ceniza: capas centimétricas de ceniza media a gruesa, color gris.

D: Lapilli fino, estratificado con gradación inversa, tonalidades rojizas, plagioclasas, clastos angulosos, baja esfericidad, bien clasificado, vesículas poco elongadas.

C: Lapilli fino (clastos de 2cm aprox.), masivo, tonalidades grisáceas-rojizas, plagioclasas y piroxenos, clastos angulosos, baja esfericidad, moderadamente clasificado, vesículas circulares poco elongadas.

B: Lapilli fino de 0.2 a 25 cm y bombas centimétricas, masivo, tonalidades grisáceas-rojizas, clastos angulosos, baja esfericidad, moderadamente clasificado, vesículas elongadas.

A: Lapilli, gradación normal, tonalidades rojizas, plagioclasas, clastos muy angulosos, baja esfericidad, mal clasificado, vesículas circulares poco elongadas.

4.3. Análisis de pendientes

Los conos monogenéticos estudiados tienen forma de herradura de caballo, y en su superficie se aprecia capas de lateritas y vegetación, que son el resultado de un largo proceso de meteorización. Con el análisis de las pendientes de los conos se evidenció que presentan pendientes inclinadas hasta la base media del cono (< 8°), mientras que en la zona superior del cono se exhiben pendientes escarpadas a muy escarpadas.

Figura 29.

Mapa de pendientes de los conos 3 y 9

Nota. Clasificación de pendientes por rangos según (Van Zuidam, 1986).

4.4. Análisis granulométrico

Se tomaron 10 muestras en la parte alta dentro del área urbana de la isla Santa Cruz, para realizar análisis granulométrico de material grueso y fino, dando los resultados que se encuentran representados en un histograma de porcentaje de peso retenido por tamiz (desde -4 φ hasta +11 φ) y una tabla de resultados estadísticos gráficos.

En la Figura 30 se observa el histograma de porcentaje de peso retenido por tamiz de la muestra CVG-01, aproximadamente el 70% del peso de la muestra era de clastos mayores a 8 mm (32,5% de ellos quedaron retenidos en el tamiz con abertura -3¢ y el 39,5% en el tamiz - 4¢). En la

Tabla 11 podemos observar que según los parámetros estadísticos granulométricos enunciados por Folk y Ward (1957), la media indica que es una grava fina (lapilli mayor a 2 mm), se encuentra muy bien clasificado, muy asimétrico hacia las partículas finas y con curtosis muy platicúrtica.

Figura 30.

Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-01

Tabla 11

Conclusión de los resultados estadísticos gráficos de la muestra CVG-01 para ensayos de

granulometría

	FOLK & WARD METHOD		
	Geométrica	Logarítmica	Descripción
	μm	ф	Descripcion
Media: (\overline{x})	6217,0	-2,636	Grava fina
Clasificación (s):	0,975	-0,037	Muy bien clasificado
Índice de asimetría (Sk):	-2,072	2,072	Muy asimétrico hacia las partículas finas
Curtosis (<i>K</i>):	-0,740	-0,740	Muy platicúrtica

En la Figura 31 se observa el histograma de porcentaje de peso retenido por tamiz de la muestra CVG-05, aproximadamente el 83% de los clastos quedaron retenidos en los tamices de abertura -3¢ (8 mm) y -2¢ (4 mm), con 30,5% y 53,16% respectivamente. En la Tabla 12 según los parámetros estadísticos granulométricos enunciados por Folk y Ward (1957), la media indica que es una grava fina (lapilli mayor a 2 mm), moderadamente clasificada, simétrica y con curtosis leptocúrtica.

Figura 31.

Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-05

Tabla 12

Conclusión de los resultados estadísticos gráficos de la muestra CVG-05 para ensayos de

granulometría

-	FOLK & WARD METHOD		
_	Geométrica	Logarítmica	- Descrinción
	μm	ф	Descripcion
Media: (\bar{x})	7428,0	-2,893	Grava fina
Clasificación (s):	1,960	0,971	Moderadamente clasificado
Índice de asimetría (<i>Sk</i>):	-0,080	0,080	Simétrica
Curtosis (<i>K</i>):	1,148	1,148	Leptocúrtico
En la Figura 32 se observa el histograma de porcentaje de peso retenido por tamiz de la muestra CVG-06, aproximadamente el 76% de los clastos quedaron retenidos en los tamices de abertura -3¢ (8 mm) y -2¢ (4 mm), con 31,6% y 45,3% respectivamente. En la Tabla 13 según los parámetros estadísticos granulométricos enunciados por Folk y Ward (1957), la media indica que es una grava fina (lapilli mayor a 2 mm), mal clasificada, asimétrico hacia las partículas finas y con curtosis leptocúrtica.

Figura 32.

Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-06

Tabla 13

Conclusión de los resultados estadísticos gráficos de la muestra CVG-06 para ensayos de

granulometría

	FOLK & WARD METHOD				
	Geométrica	Logarítmica	- Descrinción		
	μm	φ	Descripcion		
Media: (\bar{x})	6466,9	-2,693	Grava fina		
Clasificación (s):	2,310	1,208	Mal clasificado		
Índice de asimetría (<i>Sk</i>):	-0,236	0,236	Asimétrico hacia las partículas finas		
Curtosis (<i>K</i>):	1,250	1,250	Leptocúrtica		

En la Figura 33 se observa que aproximadamente el 71% del peso de la muestra CVG-07 quedó retenido en el tamiz de abertura -2¢ (4 mm). En la Tabla 14 la media indica que es una grava fina (lapilli mayor a 2 mm), moderadamente clasificado, simétrico y con curtosis leptocúrtica.

Figura 33.

Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-07

Tabla 14

Conclusión de los resultados estadísticos gráficos de la muestra CVG-07 para ensayos de

granulometría

	FOLK & WARD METHOD				
	Geométrica	Logarítmica	- Descrinción		
	μm	φ	Description		
Media: (\bar{x})	6762,1	-2,757	Grava fina		
Clasificación (s):	1,685	0,752	Moderadamente clasificado		
Índice de asimetría (<i>Sk</i>):	0,058	-0,058	Simétrico		
Curtosis (<i>K</i>):	1,292	1,292	Leptocúrtico		

En la Figura 34 se observa el histograma de porcentaje de peso retenido por tamiz de la muestra CVG-06, aproximadamente el 79% de los clastos quedaron retenidos en los tamices

de abertura -4φ (16 mm), -3φ (8 mm) y -2φ (4 mm), con 19,2 %, 33,8% y 26% respectivamente. En la Tabla 15 según los parámetros estadísticos granulométricos enunciados por Folk y Ward (1957), la media indica que es una grava fina (lapilli mayor a 2 mm), moderadamente bien clasificada, muy asimétrico hacia las partículas finas y con curtosis muy platicúrtica.

Figura 34.

Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-08

Tabla 15

Conclusión de los resultados estadísticos gráficos de la muestra CVG-08 para ensayos de

granulometría

	FOLK & WARD METHOD				
	Geométrica	Logarítmica	- Descripción		
	μm	ф	Descripcion		
Media: (\overline{x})	7189,4	-2,846	Grava fina		
Clasificación (s):	1,532	0,615	Moderadamente bien clasificado		
Índice de asimetría (<i>Sk</i>):	-3,181	3,181	Muy asimétrico hacia las partículas finas		
Curtosis (<i>K</i>):	0,218	0,218	Muy platicúrtica		

En la Figura 35 se observa el histograma de porcentaje de peso retenido por tamiz de la muestra CVG-09, aproximadamente el 81% del peso de la muestra quedó retenido entre los tamices de abertura -2¢ (4 mm), -1¢ (2 mm) y 0¢ (1 mm), con 36%, 27% y 18%

respectivamente. En la Tabla 16 según los parámetros estadísticos granulométricos enunciados por Folk y Ward (1957), la media indica que es una grava fina (o pongo lapilli mayor a 2 mm), mal clasificada, asimétrico hacia las partículas finas y con curtosis mesocúrtica.

Figura 35.

Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-09

Tabla 16

Conclusión de los resultados estadísticos gráficos de la muestra CVG-09 para ensayos de granulometría

_	FOLK & WARD METHOD			
	Geométrica	Logarítmica	Doporingián	
	μm	ф		
Media: (\bar{x})	3339,3	-1,740	Grava fina	
Clasificación (s):	2,479	1,310	Mal clasificado	
Índice de asimetría (<i>Sk</i>):	-0,105	0,105	Asimétrico hacia las partículas finas	
Curtosis (<i>K</i>):	0,966	0,966	Mesocúrtica	

En la Figura 36 se observa el histograma de porcentaje de peso retenido por tamiz de la muestra CVG-10 solo del análisis granulométrico de materiales gruesos, es decir del tamiz -4 ϕ a +4 ϕ . Aproximadamente el 67% del peso de la muestra quedó retenido en los tamices de abertura -2 ϕ (4 mm) y -1 ϕ (2 mm), con el 43,6% y 23,5% respectivamente. En la Tabla 17

según los parámetros estadísticos granulométricos enunciados por Folk y Ward (1957), la media indica que es una grava fina (lapilli mayor a 2 mm), mal clasificada, asimétrico hacia las partículas finas y con curtosis mesocúrtica.

Figura 36.

Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-10

Tabla 17

Conclusión de los resultados estadísticos gráficos de la muestra CVG-10 para ensayos de

granulometría

_	FOLK & WARD METHOD		
	Geométrica	Logarítmica	Descripción
	μm	ф	Descripcion
Media: (\bar{x})	4893,4	-2,291	Grava fina
Clasificación (s):	2,326	1,218	Mal clasificado
Índice de asimetría (<i>Sk</i>):	-0,106	0,106	Asimétrico hacia las partículas finas
Curtosis (<i>K</i>):	1,062	1,062	Mesocúrtico

En la Figura 37 se observa el histograma de porcentaje de peso retenido por tamiz de la muestra CVG-11, el 55,8% del peso de la muestra quedó retenido en el tamiz de abertura -2¢ (4 mm). En la Tabla 18 según los parámetros estadísticos granulométricos enunciados por Folk

y Ward (1957), indica que es una grava fina (lapilli mayor a 2 mm), mal clasificada, asimétrico hacia las partículas finas y con curtosis leptocúrtica.

Figura 37.

Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-11

Tabla 18

Conclusión de los resultados estadísticos gráficos de la muestra CVG-11 para ensayos de granulometría

	FOLK & WARD METHOD				
	Geométrica	Logarítmica	Docoringión		
	μm	φ Descrip			
Media : (\overline{x})	5675,0	-2,505	Grava fina		
Clasificación (s):	2,103	1,072	Mal clasificado		
Índice de asimetría (Sk):	-0,185	0,185	Asimétrico hacia las partículas finas		
Curtosis (<i>K</i>):	1,390	1,390	Leptocúrtico		

En la Figura 38 se observa el histograma de porcentaje de peso retenido por tamiz de la muestra CVG-12, aproximadamente el 81% del peso de la muestra quedó retenido en los tamices de abertura -4φ (16 mm) y -3φ (8 mm), con 54% y 27% respectivamente. En la Tabla 19 según los parámetros estadísticos granulométricos enunciados por Folk y Ward (1957),

indica que es una grava fina (lapilli mayor a 2 mm), muy bien clasificada, muy asimétrico hacia las partículas finas y con curtosis muy platicúrtica.

Figura 38.

Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-12

Tabla 19

Conclusión de los resultados estadísticos gráficos de la muestra CVG-12 para ensayos de granulometría

-	FOLK & WARD METHOD			
	Geométrica	Logarítmica	Descripción	
	μm	ф	Descripcion	
Media: (\overline{x})	6454,9	-2,690	Grava fina	
Clasificación (s):	0,757	-0,402	Muy bien clasificado	
Índice de asimetría (<i>Sk</i>):	-73,792	73,79	Muy asimétrico hacia las partículas finas	
Curtosis (<i>K</i>):	-0,013	-0,013	Muy platicúrtica	

En la Figura 39 se observa el histograma de porcentaje de peso retenido por tamiz de la muestra CVG-06, aproximadamente el 75% del peso de la muestra quedó retenido en los tamices de abertura -4¢, -3¢ y -2¢, con el 24%, 23% y 28% respectivamente. En la Tabla 20 según los parámetros estadísticos granulométricos enunciados por Folk y Ward (1957), la

media indica que es una grava fina (lapilli), moderadamente clasificada, muy asimétrico hacia las partículas finas y con curtosis muy platicúrtica.

Figura 39.

Histograma de porcentaje de peso retenido por tamiz de la muestra CVG-15

Tabla 20

Conclusión de los resultados estadísticos gráficos de la muestra CVG-15 para ensayos de granulometría

	FOLK & WARD METHOD				
	Geométrica	Logarítmica	Descripción		
	μm	ф	Descripcion		
Media: (\bar{x})	5244,7	-2,391	Grava fina		
Clasificación (s):	1,626	0,701	Moderadamente clasificado		
Índice de asimetría (Sk):	-2,334	2,334	Muy asimétrico hacia las partículas finas		
Curtosis (<i>K</i>):	0,390	0,390	Muy platicúrtica		

4.5. Morfología

Para la muestra CVG-01, se plotearon 100 clastos, donde se obtuvo que las formas más representativas se encuentran entre las clases: compacto-elongado con 27%, elongado con 23% y compacto-laminar con 19%.

Tabla 21

Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-01

Se ploteó 100 clastos para la muestra CVG-02, donde se obtuvo que la mayoría de clastos se encuentran entre las clases: compacto-laminar con 24%, compacto-elongado con 21% y laminar con 16%.

Tabla 22

Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-02

Para la muestra CVG-03, se obtuvo que la mayoría de los clastos ploteados se encontraban en las siguientes clases morfológicas: compacto (60%) y compacto elongado (38%).

Tabla 23

CVG-03 **Clases de Sneed & Folk** N° Porcentaje 30 60,00 Compacto 0 0,00 Compacto-planar Compacto-laminar 0 0,00 c:a b:a 19 38,00 Compacto-elongado 0 0,00 Planar 0 Laminar 0,00 1 2,00 Elongado 0 0,00 Muy planar 0 0,00 Muy laminar (a - b) / (a - c) 0 0,00 Muy elongado

Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-03

Se plotearon 100 clastos en el diagrama ternario de Sneed y Folk, simplificado por Cioni (Mulas et al., 2016) para la muestra CVG-05, donde se obtuvo que las formas de los clastos se encuentran entre las clases: compacto-elongado (36%) y compacto-laminar (28%).

Tabla 24

Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-05

Para la muestra CVG-07, se obtuvo que el 57% de los clastos se encuentran entre las clases: compacto-laminar (30%) y compacto-elongado (27%).

Tabla 25

Tabla de resultados de los análisis de laboratorio de morfología de la muestra CVG-07

Para la muestra CVG-08 se obtuvo que las formas de la mayoría de los clastos ploteados (73%) se encuentran entre las clases: compacto-elongado, compacto-laminar, y compacto (31%, 22 % y 20% correspondientemente).

Tabla 26

Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-08

Para la muestra CVG-09 se obtuvo que el 98% de los clastos ploteados se encuentran entre las clases morfológicas: muy planar (53%) y muy laminar (45%).

Tabla 27

Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-09

CVG-09						
Clases de Sneed & Folk						
\wedge		N°	Porcentaje			
	Compacto	0	0,00			
	Compacto-planar	0	0,00			
c:a// \ b:a	Compacto-laminar	0	0,00			
	Compacto-elongado	0	0,00			
	Planar	1	1,00			
	Laminar	1	1,00			
	Elongado	0	0,00			
	Muy planar	53	53,00			
	Muy laminar	45	45,00			
(a - b) / (a - c)	Muy elongado	0	0,00			

Para la muestra CVG-10 se obtuvo que el 63% de los clastos se encuentran entre las

clases: compacto-lamina, compacto-elongado, y elongado (26%, 25 % y 12%

correspondientemente).

Tabla 28

Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-10

Para la muestra CVG-11 se obtuvo que 78% de los clastos ploteados se encuentran entre las clases: compacto-elongado, compacto-laminar, y elongado (31%, 24 % y 23% correspondientemente).

Tabla 29

CVG-11				
*	Clases de Sneed & Fo	olk		
\wedge	—	N°	Porcentaje	
$\langle \cdot, \rangle$	Compacto	5	5,05	
	Compacto-planar	3	3,03	
c:a b:a	Compacto-laminar	24	24,24	
	Compacto-elongado	31	31,31	
	Planar	2	2,02	
	Laminar	11	11,11	
	Elongado	23	23,23	
	Muy planar	0	0,00	
	Muy laminar	0	0,00	
(a - b) / (a - c)	Muy elongado	0	0,00	

Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-11

En los resultados de la muestra CVG-12, se obtuvo que de los 100 clastos ploteados, el

30% pertenecían a la clase morfológica compacto elongado, 17% al compacto laminar y

elongado y el 15% a la clase laminar.

Tabla 30

Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-12

En la muestra CVG-15 se obtuvo que las formas de la mayoría de los clastos ploteados se encuentran entre las clases: compacto elongado (29%) y compacto laminar (23%).

Tabla 31

Tabla de resultados del análisis de laboratorio de morfología de la muestra CVG-15

4.6. Resultados de densidad de los clastos

La muestra CVG-01 indica una distribución unimodal o distribución normal, por lo que el rango de valor de densidad con mayor frecuencia es: 2 a 3 $g/_{cm^3}$.

Figura 40.

Diagrama de barras de densidades en función de la frecuencia de clastos de la muestra CVG-01

La muestra CVG-02 indica una distribución multimodal, con tres rangos de valores de densidad que presentan mayor frecuencia (18 clastos): 2 a 3 $g/_{cm^3}$, 3 a 4 $g/_{cm^3}$ y mayores o iguales a 7 $g/_{cm^3}$.

Figura 41.

Diagrama de barras de densidades en función de la frecuencia de clastos de la muestra CVG-

02

La muestra CVG-11 indica una distribución unimodal o distribución normal, por lo que el rango de densidad con mayor frecuencia (36 clastos) es: 2 a 3 $g/_{cm^3}$.

Figura 42.

Diagrama de barras de densidades en función de la frecuencia de clastos de la muestra CVG-11

La muestra CVG-15 indica una distribución bimodal, con dos picos de valores de densidad: 3 a 4 $g/_{cm^3}$ y mayores o iguales a 7 $g/_{cm^3}$. Aunque un dato importante a recalcar es que en esta muestra el rango de densidad 2 a 3 $g/_{cm^3}$ también es un rango con alta frecuencia de clastos (21) pero en la gráfica no se lo considera como un pico de valor.

Figura 43.

Diagrama de barras de densidades en función de la frecuencia de clastos de la muestra CVG-02

4.7. Resultados de análisis de abrasión de Los Ángeles

La Tabla 32 muestra el porcentaje de desgaste de la muestra (38%), como un indicador de calidad para la fabricación de hormigón, agregado para asfalto, entre otros materiales para obras civiles, debido a que se evaluó la resistencia del agregado y su desgaste.

Tabla 32

Tabla de resultado del ensayo abrasión de los ángeles

Determinación del desgaste			
Gradación tipo:	В		
Masa inicial (g):	4987		
Masa final (g):	3092		
Porcentaje de desgaste:	38%		

CAPÍTULO 5

5. ANÁLISIS DE RESULTADOS

5.1. Análisis de la descripción de conos

Los conos estudiados son depósitos estratificados con tamaños de clastos variables desde cenizas a lapilli, con presencia de bombas volcánicas. Los clastos son angulosos, presentan baja esfericidad y vesículas casi circulares; de colores rojizos-marrones y negros grisáceos, que indican variaciones químicas en los clastos, así como procesos de meteorización.

5.2. Análisis morfológicos

La mayoría de las muestras con excepción de CVG-09, forman parte de la clase compacta. Los clastos compactos representan el 64% en volumen de las muestras (Figura 44). Lo que sugiere una deposición de los fragmentos piroclásticos relativamente rápida. Se debe de tomar en cuenta que también hay un porcentaje sugerente de clastos elongados, representando el 12,49% en volumen de las muestras, lo que indicaría una erupción explosiva y viscosidad baja, debido a que, la fuerza generada por la explosión hace que los fragmentos se estiren y se rompan.

Figura 44.

Resumen de resultados de morfología en el diagrama ternario de Sneed y Folk, simplificado por *Cioni* (citado en Mulas et al., 2016).

Figura 45.

Resumen de morfología basado en las clases de Sneed & Folk en un diagrama de barras.

5.3. Análisis granulométricos

Analizadas las 10 muestras, se puede deducir que los clastos son clasificados como grava fina, que en material piroclástico es lapilli. La selección de los clastos muestra una distribución variada, que va desde mal clasificados a muy bien clasificados e incluso, la asimetría y curtosis son pronunciadas; lo que podría señalar la presencia de varias fuentes activas al mismo tiempo durante un evento eruptivo.

El grado de asimetría indica que las muestras tienen tendencia a tamaños finos y la curtosis muestra las distribuciones granulométricas alrededor de los valores centrales. Los valores de curtosis varían desde -0,013 (curva muy platicúrtica) a 1,148 (curva leptocúrtica).

Tabla 33

Muestras	Método Folk y Ward	Media	Clasificación	Asimetría	Curtosis
	Geométrico (µm)	6217	0,975	-2,072	-0,740
	Descripción	Grava fina	Muy bien clasificado	Muy asimétrico hacia las partículas finas	Muy platicúrtica
CVG-05	Geométrico (µm)	7428	1,960	-0,080	1,148
	Descripción	Grava fina	Moderadamente clasificado	Simétrica	Leptocúrtica
CVG-06	Geométrico (µm)	6466,9	2,310	0,236	1,250
CVG-06	Descripción	Grava fina	Mal clasificado	Asimétrico hacia las partículas finas	Leptocúrtica
CVG-07 -	Geométrico (µm)	6762,1	1,685	0,058	1,292
	Descripción	Grava fina	Moderadamente clasificado	Simétrica	Leptocúrtica
	Geométrico (µm)	7189,4	1,532	-3,181	0,218
	Descripción	Grava fina	Moderadamente bien clasificado	Muy asimétrico hacia las partículas finas	Muy platicúrtica
	Geométrico (µm)	3339,3	2,479	-0,105	0,966
CVG-09	Descripción	Grava fina	Mal clasificado	Asimétrico hacia las partículas finas	Mesocúrtica
	Geométrico (µm)	4893,4	2,326	-0,106	1,062
CVG-10	Descripción	Grava fina	Mal clasificado	Asimétrico hacia las partículas finas	Mesocúrtica
	Geométrico (µm)	5675,0	2,103	-0,185	1,390
000-11	Descripción	Grava fina	Mal clasificado	Asimétrico hacia las partículas finas	Leptocúrtica

Resumen de resultados estadísticos gráficos de los ensayos de granulometría

Muestras Método Folk y Ward		Media	Clasificación	Asimetría	Curtosis
CVC 12	Geométrico (µm)	6454,9	0,757	-73,792	-0,013
CVG-12	Descripción	Grava fina	Muy bien clasificado	Muy asimétrico hacia las partículas finas	Muy platicúrtica
CVC 15	Geométrico (µm)	3339,3	2,479	-0,105	0,966
CVG-15	Descripción	Grava fina	Moderadamente clasificado	Muy asimétrico hacia las partículas finas	Muy platicúrtica

5.4. Análisis de densidades:

Los valores de densidad de las muestras son variables, como se muestra en la Figura 46 y la Tabla 34, a pesar de ello, el rango de densidad con mayor frecuencia en casi todas las muestras es: 2 a 3 $g/_{cm^3}$. Lo que sugiere que estos materiales han sido depositados en distintas fases del mismo episodio volcánico.

Hay que tener en consideración que existe relación entre la densidad y las vesículas de los clastos. En los clastos de las muestras, se aprecia una marcada presencia de vesículas generalmente esféricas (diámetro desde 1 mm hasta los 2 cm). Lo que podría indicar que los depósitos se formaron a partir de una significativa cantidad de gases volátiles.

Figura 46.

Diagrama de barras de densidades en función de la frecuencia de clastos de las muestras analizadas

Tabla 34

Rango de densidades									
Muestra	(0-1)	(1-2)	(2-3)	(3-4)	(4-5)	(5-6)	(6-7)	(>=7)	- Mediana
CVG-01	0%	11%	65%	12%	5%	3%	1%	3%	2,38
CVG-02	0%	6%	18%	18%	16%	16%	7%	18%	4,37
CVG-03	0%	0%	33%	16%	12%	12%	7%	21%	4,00
CVG-05	0%	0%	37%	31%	13%	7%	2%	10%	3,10
CVG-07	1%	29%	48%	11%	3%	5%	3%	0%	2,20
CVG-08	1%	21%	62%	11%	2%	2%	1%	0%	2,30
CVG-09	0%	4%	69%	22%	1%	1%	1%	2%	2,60
CVG-10	0%	18%	47%	18%	9%	3%	1%	4%	2,55
CVG-11	0%	11%	36%	25%	15%	7%	2%	4%	3,00
CVG-12	0%	25%	68%	5%	0%	0%	0%	2%	2,10
CVG-15	0%	1%	21%	27%	18%	10%	6%	17%	4,00

Resumen de densidades en las muestras analizadas

5.5. Análisis del ensayo de abrasión de Los Ángeles

Según el porcentaje de desgaste 38%, se puede concluir que el agregado es resistente al desgaste. Por lo que, podemos sugerir usarse como:

- Superficie de agregados no tratados (se emplea en la vía para proveer una superficie resistente, impermeable y estable), debido a que los agregados deben de tener como máximo el 50% de porcentaje de desgaste a la abrasión.
 (Especificaciones generales para la construcción de caminos y puentes, 2013)
- Base de hormigón asfáltico, el porcentaje de desgaste debe de ser menor al 40%.
- Árido grueso para hormigón. Estos agregados deberán tener un porcentaje de desgaste que no sea mayor al 50% a 500 revoluciones.

CAPÍTULO 6

6. CONCLUSIONES Y RECOMENDACIONES

6.1. Conclusiones

- Se definió como material pétreo más sustentable al lapilli debido a factores legales, ambientales y económicos. Los conos presentan depósitos con granulometría entre lapilli y ceniza. Sus clastos comúnmente son compactos y elongados, con variedad de colores e iridiscencia.
- El material muestreado de la isla Santa Cruz es un agregado óptimo para la construcción carreteras, debido a que su porcentaje de desgaste es aceptable para su utilización.
- Los conos monogenéticos tienen forma de herradura de caballo y en promedio presentan pendientes inclinadas (7.4°). Se observan pendientes inclinadas y pendientes escarpadas a muy escarpadas.
- 4. Entre los sectores de Santa Rosa y Bellavista se ubicaron 14 conos monogenéticos.

6.2. Recomendaciones

Las siguientes recomendaciones que se plantean son para futuras propuestas de tesis, para profundizar en el conocimiento de información sobre el material pétreo que se encuentra en la isla.

- Realizar análisis petrográficos y geoquímicos de los clastos, para entender mejor su composición química e historia evolutiva.
- Terminar la recolección de capturas de imágenes con drones para la generación de ortofotos en la isla Santa Cruz y aplicar la misma metodología en las demás islas pobladas.

- 3. Realizar más estudios de caracterización geológica en los diferentes conos para valorar la potencialidad del material pétreo que presenta la isla Santa Cruz.
- Se recomienda hacer más análisis de carácter civil al material de Santa Cruz para mejorar la calidad del agregado y evaluar que aditivos adicionales complementarían su uso.

Referencias

Alperin, M. (2013). Introducción al análisis estadístico de datos geológicos (1a ed.). Editorial de la Universidad Nacional de La Plata (EDULP).

http://sedici.unlp.edu.ar/handle/10915/34221

Argus, D. F. y Gordon, R. G. y Demets, C. (2011). Geologically current motion of 56 plates relative to the no-net-rotation reference frame. *Geochemistry, Geophysics, Geosystems*, 12(11). https://doi.org/10.1029/2011GC003751

Arqhys Decoración. (2019, febrero). ¿Qué es el Basalto?

https://www.arqhys.com/decoracion/que-es-el-basalto.html

Constitución de la República del Ecuador, Pub. L. No. Registro oficial No. 449 (2008).

https://www.asambleanacional.gob.ec/sites/default/files/documents/old/constitucion_de_bol sillo.pdf

Atlas de rocas ígneas. (2015, enero 3). VOLCANES Y FORMAS VOLCÁNICAS. Departamento de Petrología y Geoquímica (Universidad Complutense de Madrid). https://petroignea.wordpress.com/formas-de-yacimiento/depositos-volcanicos/edificiosvolcanicos/

Boggs, S. (2009). Petrology of sedimentary rocks. Cambridge university press.

Bow, C. S. (1979). *Geology and Petrogenesis of lavas from Floreana and Santa Cruz islands, Galapagos Archipelago* [Ph.D.]. Univ. of Oreg.

Consejo de Gobierno del Régimen Especial de Galápagos. (2021). Plan de Desarrollo Sustentable y Ordenamiento Territorial del Régimen Especial de Galápagos, Plan Galápagos 2030. https://unidosporgalapagos.files.wordpress.com/2021/05/plangalacc81pagos-2030-2.pdf

- Corral, J. T. (2012). Caracterización granulométrica de las plantas productoras de arena en la República Dominicana, su impacto en la calidad y costo del hormigón. *Ciencia y sociedad*, *37*(3), 293–334.
- Dumitriu, D. y Niculiță, M. y Condorachi, D. (2011). Downstream Variation in the Pebble Morphometry of the Trotuş River, Eastern Carpathians (Romania). *Forum geografic, 10*(1).
- El Universo. (2018, julio 8). En Galápagos, de cinco sitios se extrae material pétreo. https://www.eluniverso.com/vida/2018/07/06/nota/6845708/galapagos-cinco-sitios-seextrae-material-petreo/
- Espín, C. y Sierra, D. y Yépez, M. y Almeida, M. y Cisneros, C. (2022, septiembre 9). *Instituto Geofísico - EPN*. https://www.igepn.edu.ec/islas-galapagos/tag/gal%C3%A1pagos

Folk, R. L. (1974). Petrology of sedimentary rocks. Hemphill publishing company.

- Gobierno Autónomo Descentralizado Municipal de Santa Cruz. (2013). *Plan de Desarrollo y Ordenamiento Territorial del Cantón Santa Cruz 2012 2027.* https://www.gobiernogalapagos.gob.ec/wp-content/uploads/downloads/2013/08/PDOT-Santa-Cruz-2012_2_primero.pdf
- Grossman, R. B. y Reinsch, T. G. (2018). 2.1 Bulk Density and Linear Extensibility. Methods of Soil Analysis, Part 4: Physical Methods, 201–228. https://doi.org/10.2136/SSSABOOKSER5.4.C9
- Harpp, K. S. y Geist, D. J. (2018). The evolution of galápagos volcanoes: An alternative perspective. *Frontiers in Earth Science*, *6*, 351022.
 https://doi.org/10.3389/FEART.2018.00050/BIBTEX
- Harpp, K. S. y Weis, D. (2020). Insights Into the Origins and Compositions of Mantle Plumes: A Comparison of Galápagos and Hawai'i. *Geochemistry, Geophysics, Geosystems*, 21(9), e2019GC008887. https://doi.org/10.1029/2019GC008887

- Herrera, I. A. y Paque, R. y Maertens, M. y Vanacker, V. (2022). History of Land Cover Change on Santa Cruz Island, Galapagos. *Land*, *11*(7), 1017. https://doi.org/10.3390/LAND11071017/S1
- Ito, G. y Lin, J. y Graham, D. (2003). Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction. *Reviews of Geophysics*, 41(4), 1017. https://doi.org/10.1029/2002RG000117
- Kuryaeva, G. y Kirkinskii, V. A. (1997). Influence of high pressure on the refractive index and density of tholeiite basalt glass. *Physics and Chemistry of Minerals*, 25(1), 48–54. https://doi.org/10.1007/S002690050085
- Laboratorio de Geotecnia y Construcción. (2021, mayo 18). *Guía para el ensayo de: Abrasión de Los Ángeles*. https://espolec.sharepoint.com/sites/REPOSITORIO-LABGC-DOCENCIA/Material%20de%20referencia/Forms/AllItems.aspx?id=%2Fsites%2FREPOSI TORIO%2DLABGC%2DDOCENCIA%2FMaterial%20de%20referencia%2FABRASI%C3% 93N%20DE%20LOS%20%C3%81NGELES%2FLABGC%2D01GH%5FGu%C3%ADa%20 Pr%C3%A1ctica%20Abrasi%C3%B3n%20de%20los%20%C3%81ngeles%2Epdf&parent=%2Fsites%2FREPOSITORIO%2DLABGC%2DDOCENCIA%2FMaterial%20de%20referencia%2FABRASI%C3%B3n%20de%20los%20%C3%81ngeles%2Epdf&parent=%2Fsites%2FREPOSITORIO%2DLABGC%2DDOCENCIA%2FMaterial%20de%20referencia%2FABRASI%C3%B3n%20DE%20LOS%20%C3%81NGELES
- Loayza, M. y Quinde, A. (2023). Plan de explotación de material pétreo en el sector urbano de la Isla Santa Cruz (Galápagos), Ecuador [Tesis de pregrado, Escuela Superior Politécnica del Litoral].
- Maldonado, Y. (2023, mayo 10). Roca Basalto, Características, propiedades ¿Para qué sirve? https://geologiaweb.com/rocas/basalto/#Usos_del_basalto
- Mendoza, J. (2019, octubre 4). *Moda Estadística*. https://estadisticamente.com/modaestadistica/

Especificaciones generales para la construcción de caminos y puentes, Pub. L. No. NEVI-12-MTOP (2013). https://www.obraspublicas.gob.ec/wp-

content/uploads/downloads/2013/12/01-12-2013_Manual_NEVI-12_VOLUMEN_3.pdf

- Ministerio de Turismo. (2023, abril 6). *Galápagos alcanzó cifras récord en la llegada de viajeros*. https://www.turismo.gob.ec/galapagos-alcanzo-cifras-record-en-la-llegada-de-viajeros/
- Mittelstaedt, E. y Soule, S. y Harpp, K. y Fornari, D. y McKee, C. y Tivey, M. y Geist, D. y Kurz,
 M. D. y Sinton, C. y Mello, C. (2012). Multiple expressions of plume-ridge interaction in the
 Galápagos: Volcanic lineaments and ridge jumps. *Geochemistry, Geophysics, Geosystems, 13*(5). https://doi.org/10.1029/2012GC004093
- Mulas, M. y Cioni, R. y Andronico, D. y Mundula, F. (2016). The explosive activity of the 1669
 Monti Rossi eruption at Mt. Etna (Italy). *Journal of Volcanology and Geothermal Research*, 328, 115–133. https://doi.org/10.1016/J.JVOLGEORES.2016.10.012
- Muzzio, L. y Piedra, J. (2018). Estudio para la definición de posibles áreas de explotación
 de materiales pétreos de sectores poblados de Santa Cruz, Galápagos [Escuela Superior
 Politécnica del Litoral]. https://www.dspace.espol.edu.ec/xmlui/handle/123456789/46775
- Pérez, A. y Márquez, A. (2017). *Sedimentología*. Universidad Autónoma Metropolitana. http://publicacionescbs.izt.uam.mx/DOCS/SEDIMENTOL.pdf
- Rueda, D. y Sevilla, C. (2022, febrero 16). *Control y Registro de Movilización de Recursos Pétreos*. https://galapagos.gob.ec/control_y_registro_movilizacion_recursos_petreos/
- Sallarés, V. y Charvis, P. y Calahorrano, A. (2009). *Naturaleza y Formación de la Provincia Volcánica de Galápagos*.
- Santillán, N. y Arcos, J. y Vidal, M. y Cruz, J. (2009). Estadística como una herramienta necesaria para los ingenieros geólogos del futuro.

Schwartz, D. (2014). Volcanic, Structural, and Morphological history of Santa Cruz Island, Galápagos archipelago [Master of Science, University of Idaho]. https://drive.google.com/file/d/1iMk9grGWRNORT7K2JxjsoXs4EY6IPKRU/view

Schwartz, D. M. y Harpp, K. y Kurz, M. D. y Wilson, E. y Van Kirk, R. (2022). Low-volume magmatism linked to flank deformation on Isla Santa Cruz, Galápagos Archipelago, using cosmogenic 3He exposure and 40Ar/39Ar dating of fault scarps and lavas. *Bulletin of Volcanology*, *84*(9), 1–17. https://doi.org/10.1007/S00445-022-01575-3/FIGURES/7

Sieron, K. (2008). Vulcanismo (1a ed.). https://www.uv.mx/apps/vulcanismo/

- Sigurdsson, H. y Houghton, B. y McNutt, S. R. y Rymer, H. y Stix, J. (1999). *Encyclopedia of volcanoes* (Vol. 1). Academic Press.
- Statologos. (2022, enero 2). *▷* ¿ Qué es una distribución unimodal? (Definición y ejemplo) en 2023 → STATOLOGOS®. https://statologos.com/distribucion-unimodal/

Toulkeridis, T. (2011). Volcanic Galápagos Volcánico (CGVG-USFQ, Ed.; Ediecuatorial).

- Ugur, I. y Demirdag, S. y Yavuz, H. (2010). Effect of rock properties on the Los Angeles abrasion and impact test characteristics of the aggregates. *Materials Characterization*, *61*(1), 90–96. https://doi.org/10.1016/J.MATCHAR.2009.10.014
- UNESCO. (2018, octubre 30). Reserva de la Biosfera Archipiélago de Colón Galápagos (Ecuador). https://es.unesco.org/biosphere/lac/galapagos
- Universidad de Alicante. (2020). Aspectos texturales. Atlas Digital de Petrología Sedimentaria. https://web.ua.es/es/e-pesedua/siliciclasticas/aspectos-texturales.html
- Van Zuidam, R. (1986). *Aerial Photointerpretation in terrain analysis and geomorphologic mapping*. The Hague: Smits Publishers.
- White, W. M. y McBirney, A. R. y Duncan, R. A. (1993). Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume. *Journal of Geophysical Research: Solid Earth*, 98(B11), 19533–19563. https://doi.org/10.1029/93JB02018

Wilson, E. L. y Harpp, K. S. y Schwartz, D. M. y Van Kirk, R. (2022). The Geochemical Evolution of Santa Cruz Island, Galápagos Archipelago. *Frontiers in Earth Science*, *10*, 605. https://doi.org/10.3389/FEART.2022.845544/BIBTEX

ANEXOS

Anexo 1 Diagramas de barras de densidades en función de la frecuencia de clastos

Anexo 2 Mapa de ubicaciones de conos monogenéticos

Anexo 3 Resultados de granulometría fina

HORIBA LA-300 for Windows(TM) Ver.3.73 LA-300 system for Windows

HOKIBA LA-300 for Windows(TM) Ver.3.73 LA-300 system for Windows

Median : 64.3050(µm) 37.00 (µm)- 85.277(%) Diameter on % :(1)5.000 (%)- 194.7834(µm) 18.00 (µm)- 98.417(%) (2)10.00 (%)- 153.0862(µm) 9.000 (µm)- 99.443(%) (3)20.00 (%)- 110.4870(µm) 4.500 (µm)- 99.443(%) (4)30.00 (%)- 88.2649(µm) 2.200 (µm)- 99.443(%) (5)40.00 (%)- 74.5137(µm) 1.100 (µm)- 10.000(%) (6)60.00 (%)- 55.9692(µm) Mean : 80.0752(µm) (7)70.00 (%)- 48.5319(µm) : 80.0752(µm) (8)80.00 (%)- 41.2147(µm) : 99.000 (%)- 39.571(%)	
Eredneuco (%)	2.
0.100 1.000 10.00 100.0 Diameter (um)	
No. Diameter Freq. % Over % No. Diameter Freq. % Over % No. Diameter Freq. % Over %	
3 0.150 0.000 100.000 25 2.976 0.117 99.656 47 58.953 9.830 56.238	
4 0.172 0.000 100.000 26 3.409 0.111 99.545 48 67.523 9.744 46.494	
5 0.197 0.000 100.000 27 3.905 0.102 99.443 49 77.339 8.948 37.546	
6 0.226 0.000 100.000 28 4.472 0.000 99.443 50 88.583 7.751 29.795	
8 0 296 0 000 100 000 30 5 867 0 000 99 443 52 116 210 5 301 18 028	
9 0.339 0.000 100.000 31 6.720 0.000 99.443 53 133.103 4.342 13.686	
10 0.389 0.000 100.000 32 7.697 0.000 99.443 54 152.453 3.594 10.092	
11 0.445 0.000 100.000 33 8.816 0.000 99.443 55 174.616 3.020 7.072	
12 0.510 0.000 100.000 34 10.097 0.000 99.443 56 200.000 2.573 4.499	
13 0.584 0.000 100.000 35 11.565 0.113 99.330 57 229.075 2.210 2.289	
14 0.009 0.000 100.000 30 15.240 0.157 99.173 38 202.570 1.228 1.001 15 0.766 0.000 100.000 37 15.172 0.237 08.030 50 300.518 0.682 0.370	
16 0.877 0.000 100.000 38 17.377 0.367 98 572 60 344 206 0.379 0.000	
17 1.005 0.000 100.000 39 19.904 0.599 97.973 61 394.244 0.000 0.000	
18 1.151 0.000 100.000 40 22.797 0.997 96.976 62 451.556 0.000 0.000	
19 1.318 0.000 100.000 41 26.111 1.652 95.324 63 517.200 0.000 0.000	
20 1.510 0.000 100.000 42 29.907 2.663 92.661 64 592.387 0.000 0.000	
21 1.729 0.000 100.000 43 34.255 4.079 88.582 22 1.981 0.000 100.000 44 39.234 5.818 82.764	

100.0

Oversize (%)

____0.0 600.0

HORIBA LA-300 for Windows(TM) Ver.3.73 LA-300 system for Windows

Filena D# Circul Ultra Laser Form Calc. R.R.I Axis	nne lation Speed sonic T% of Distribut Level ndex Selection	:CV :200 d :10 :OF : 91 tion :Sta :30 :Ba: :Lo;	7G07-01- 04011602 TF 8(%) undard salto pill gX-LinY	-06 2540 i	22		5 N S I T S I	Samp Mate Sourc Lot N Test Samp Dispo	ole Name rial ce Jumber or Assay. I ole Prepara ersant	Number tion	:CVG-(:Lapilli :Santa o :1 :1 : :Agua o)7 cruz lestilada		
Media Diame % on :	n : 5 eter on % :(1) (2) (3) (4) (5) (6) (7) (8) (9) (14 Diameter :75	7.6908(µ)5.000 (%)10.00 (%)20.00 (%)30.00 (%)40.00 (%)60.00 (%)90.00 (%)99.00 (%)99.5.00 (.00 (µm)	m) 6)-116.2(6)- 98.36 6)- 81.08 6)- 71.10 6)- 63.76 6)- 52.31 6)- 46.98 6)- 44.31 6)- 44.31 6)- 34.37 %)- 28.4 ⊢ 25.536	085(µ 21(µr 63(µr 55(µr 89(µr 79(µr 51(µr 61(µr 129(µ 5(%)	m) n) n) n) m) Mean n) n) m) m)		37.00 (μ 18.00 (μ 9.000 (μ 4.500 (μ 2.200 (μ 1.100 (μ : 62.831)	п)- п)- п)- п)- п)- б(μт	86.467(%) 98.519(%) 98.942(%) 99.735(%) 100.000(%)					
16.	oo _{[1}													100
	(%) (%)	- <u> </u>			<u>, </u>	····	.							o Oversize (%)
	0.100			1	.000			10.	00 Diamat		. 10	0.0	6	500.0
									Diamete	er (µm))			
No.	Diameter F	req. %	Over %	No.	Diameter 1	Freq. %	Over %	No.	Diameter	Freq. %	Over %			
1	0.115	0.000	100.000	23	2.269	0.167	99.697	45	44.938	9.591	74.061			
2	0.131	0.000	100.000	24	2.599	0.179	99.518	46	51.471	12.391	61.670			
3	0.150	0.000	100.000	25	2.976	0.174	99.344	4/	58.953	13.884	4/./80			
5	0.197	0.000	100.000	27	3.905	0.130	99.054	49	77.339	11.364	22.964			
6	0.226	0.000	100.000	28	4.472	0.112	98.942	50	88.583	8.504	14.460			
7	0.259	0.000	100.000	29	5.122	0.000	98.942	51	101.460	5.781	8.679			
8	0.296	0.000	100.000	30	5.867	0.000	98.942	52	116.210	3.680	5.000			
9 10	0.339	0.000	100.000	32	0.720	0.000	98.942	50	153.103	2.202	2.758			
11	0.445	0.000	100.000	33	8.816	0.000	98.942	55	174.616	0.869	0.483			
12	0.510	0.000	100.000	34	10.097	0.000	98.942	56	200.000	0.483	0.000			
13	0.584	0.000	100.000	35	11.565	0.000	98.942	57	229.075	0.000	0.000			
14	0.669	0.000	100.000	36	13.246	0.000	98.942	58	262.376	0.000	0.000			
15	0.766	0.000	100.000	37	15.172	0.127	98.815	59	300.518	0.000	0.000			
10	0.877	0.000	100.000	30	17.377	0.204	98.011	61	304 244	0.000	0.000			
18	1.151	0.000	100.000	40	22.797	0.534	97,610	62	451.556	0.000	0.000			
19	1.318	0.000	100.000	41	26.111	1.211	96.399	63	517.200	0.000	0.000			
20	1.510	0.000	100.000	42	29.907	2.247	94.152	64	592.387	0.000	0.000			
21	1.729	0.000	100.000	43	34.255	3.982	90.170							
22	1.981	0.137	99.863	44	39.234	6.519	83.651							

100.0

Oversize (%)

HORIBA LA-300 for Windows(TM) Ver.3.73 LA-300 system for Windows

Filename ID# Circulation Speed Ultra sonic Laser T% Form of Distributio Calc. Level R.R.Index Axis Selection	:CVG09-01-06 :200401030425910 :10 :OFF : 91.7(%) n :Standard :30 :Basalto pilli :LogX-LinY		Sample Name Material Source Lot Number Test or Assay. Number Sample Preparation Dispersant	:CVG-09 :Lapilli :Santa cruz :1 r :1 : :Agua destilada
Median : 55.3 Diameter on % (2)1(0 (3)20 (4)30 (5)40 (6)60 (7)70 (8)80 (9)90 (10)9 % on Diameter :75.00	3792(µm) 000 (%)- 113.9486(µm) 0.00 (%)- 95.9464(µm) 0.00 (%)- 78.3580(µm) 0.00 (%)- 61.3916(µm) 0.00 (%)- 49.9920(µm) 0.00 (%)- 39.3384(µm) 0.00 (%)- 31.9570(µm) 0.00 (%)- 26.2516(µm) 0 (µm)- 23.093(%)	Mean	37.00 (µm) 83.387(%) 18.00 (µm) 97.872(%) 9.000 (µm) 98.542(%) 4.500 (µm) 98.647(%) 2.200 (µm) 99.581(%) 1.100 (µm) 100.000(%) : 60.3996(µm)	

No.	Diameter F	Freq. %	Over %	No.	Diameter	Freq. %	Over %	No.	Diameter	Freq. %	Over %
1	0.115	0.000	100.000	23	2.269	0.194	99.537	45	44.938	10.287	69.914
2	0.131	0.000	100.000	24	2.599	0.209	99.328	46	51.471	12.625	57.289
3	0.150	0.000	100.000	25	2.976	0.203	99.125	47	58.953	13.516	43.772
4	0.172	0.000	100.000	26	3.409	0.184	98.941	48	67.523	12.633	31.139
5	0.197	0.000	100.000	27	3.905	0.158	98.784	49	77.339	10.399	20.740
6	0.226	0.000	100.000	28	4.472	0.132	98.652	50	88.583	7.677	13.063
7	0.259	0.000	100.000	29	5.122	0.110	98.542	51	101.460	5.207	7.856
8	0.296	0.000	100.000	30	5.867	0.000	98.542	52	116.210	3.340	4.517
9	0.339	0.000	100.000	31	6.720	0.000	98.542	53	133.103	2.085	2.431
10	0.389	0.000	100.000	32	7.697	0.000	98.542	54	152.453	1.304	1.127
11	0.445	0.000	100.000	33	8.816	0.000	98.542	55	174.616	0.725	0.402
12	0.510	0.000	100.000	34	10.097	0.000	98.542	56	200.000	0.403	0.000
13	0.584	0.000	100.000	35	11.565	0.000	98.542	57	229.075	0.000	0.000
14	0.669	0.000	100.000	36	13.246	0.112	98.430	58	262.376	0.000	0.000
15	0.766	0.000	100.000	37	15.172	0.166	98.264	59	300.518	0.000	0.000
16	0.877	0.000	100.000	38	17.377	0.271	97.994	60	344.206	0.000	0.000
17	1.005	0.000	100.000	39	19.904	0.470	97.523	61	394.244	0.000	0.000
18	1.151	0.000	100.000	40	22.797	0.853	96.671	62	451.556	0.000	0.000
19	1.318	0.000	100.000	41	26.111	1.560	95.111	63	517.200	0.000	0.000
20	1.510	0.000	100.000	42	29.907	2.796	92.315	64	592.387	0.000	0.000
21	1.729	0.111	99.889	43	34.255	4.739	87.576				
22	1.981	0.158	99.731	44	39.234	7.375	80.201				
HORIBA LA-300 for Windows(TM) Ver.3.73 LA-300 system for Windows

Filename :CVG12-01-06 D# :200401020158873 Circulation Speed :15 Ultra sonic :OFF Laser T% :92.6(%) Form of Distribution :Standard Calc. Level :30 R.R.Index :Basalto pilli Avis Selection I.ogX-I inY	Sample Name Material Source Lot Number Test or Assay. Numbe Sample Preparation Dispersant	:CVG-12 :Lapilli :Santa cruz :1 r :1 : :Agua destilada
---	---	--

Median : 56.2202(µm)	
Diameter on % :(1)5.000 (%)- 114.8457(µm)	
(2)10.00 (%)- 96.9487(μm)	
(3)20.00 (%)- 79.4538(μm)	
(4)30.00 (%)- 69.5290(μm)	
(5)40.00 (%)- 62.2809(μm)	
(6)60.00 (%)- 50.8570(μm)	Mean
(7)70.00 (%)- 45.6753(μm)	
(8)80.00 (%)- 40.1459(μm)	
(9)90.00 (%)- 33.3052(μm)	
(10)95.00 (%)- 28.1089(µm)	
% on Diameter :75.00 (µm)- 24.013(%)	

37.00 (μm)- 84.881(%) 18.00 (μm)- 99.315(%) 9.000 (μm)- 100.000(%) 4.500 (μm)- 100.000(%) 2.200 (μm)- 100.000(%) 1.100 (μm)- 100.000(%) : 61.6578(μm)

No.	Diameter	Freq. %	Over %	No.	Diameter	Freq. %	Over %	No.	Diameter	Freq. %	Over %
1	0.115	0.000	100.000	23	2.269	0.000	100.000	45	44.938	10.214	71.515
2	0.131	0.000	100.000	24	2.599	0.000	100.000	46	51.471	12.631	58.884
3	0.150	0.000	100.000	25	2.976	0.000	100.000	47	58.953	13.661	45.222
4	0.172	0.000	100.000	26	3.409	0.000	100.000	48	67.523	12.909	32.314
5	0.197	0.000	100.000	27	3.905	0.000	100.000	49	77.339	10.729	21.585
6	0.226	0.000	100.000	28	4.472	0.000	100.000	50	88.583	7.975	13.610
7	0.259	0.000	100.000	29	5.122	0.000	100.000	51	101.460	5.429	8.181
8	0.296	0.000	100.000	30	5.867	0.000	100.000	52	116.210	3.484	4.697
9	0.339	0.000	100.000	31	6.720	0.000	100.000	53	133.103	2.172	2.525
10	0.389	0.000	100.000	32	7.697	0.000	100.000	54	152.453	1.355	1.171
11	0.445	0.000	100.000	33	8.816	0.000	100.000	55	174.616	0.753	0.418
12	0.510	0.000	100.000	34	10.097	0.000	100.000	56	200.000	0.418	0.000
13	0.584	0.000	100.000	35	11.565	0.000	100.000	57	229.075	0.000	0.000
14	0.669	0.000	100.000	36	13.246	0.111	99.889	58	262.376	0.000	0.000
15	0.766	0.000	100.000	37	15.172	0.170	99.719	59	300.518	0.000	0.000
16	0.877	0.000	100.000	38	17.377	0.279	99.441	60	344.206	0.000	0.000
17	1.005	0.000	100.000	39	19.904	0.484	98.957	61	394.244	0.000	0.000
18	1.151	0.000	100.000	40	22.797	0.869	98.088	62	451.556	0.000	0.000
19	1.318	0.000	100.000	41	26.111	1.573	96.515	63	517.200	0.000	0.000
20	1.510	0.000	100.000	42	29.907	2.790	93.726	64	592.387	0.000	0.000
21	1.729	0.000	100.000	43	34.255	4.699	89.027				
22	1.981	0.000	100.000	44	39.234	7.299	81.728				

HORIBA LA-300 for Windows(TM) Ver.3.73 LA-300 system for Windows

Filename	:CVG15-01-06		Sample Name	:CVG-15
D#	:200402130003112		Material	:Lapilli
Circulation Speed Ultra sonic Laser T% Form of Distribution Calc. Level R.R.Index Axis Selection	:15 :OFF : 91.5(%) :Standard :30 :Basalto pilli :LogX-LinY		Source Lot Number Test or Assay. Numbe Sample Preparation Dispersant	:Santa cruz :1 r :1 : :Agua destilada
Median 57.98	300(um)		37.00 (um)- 87.350(%)	
Diameter on % :(1)5.00	00 (%)- 118.4972(µm)		18.00 (µm)- 99.635(%)	
(2)10.0	00 (%)- 99.4295(µm)		9.000 (µm)- 100.000(%)	
(3)20.0	00 (%)- 81.7956(µm)		4.500 (µm)- 100.000(%)	
(4)30.0	00 (%)- 71.5715(μm)		2.200 (μm)- 100.000(%)	
(5)40.0	00 (%)- 64.1087(μm)		1.100 (μm)- 100.000(%)	
(6)60.0)0 (%)- 52.5890(µm)	Mean	: 63.7242(µm)	
(1) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h				

Median	: 57.9800(µm)		
Diameter on %	:(1)5.000 (%)-	118.4972(µm)	
	(2)10.00 (%)-	99.4295(µm)	
	(3)20.00 (%)-	81.7956(µm)	
	(4)30.00 (%)-	71.5715(µm)	
	(5)40.00 (%)-	64.1087(μm)	
	(6)60.00 (%)-	52.5890(µm)	Mean
	(7)70.00 (%)-	47.2928(µm)	
	(8)80.00 (%)-	41.7472(µm)	
	(9)90.00 (%)-	35.0609(µm)	
	(10)95.00 (%)	- 30.1451(µm)	

% on Diameter :75.00 (µm)- 26.089(%)

10.Diameter Heq. 90 Over 90 100.100.Diameter Heq. 90 Over 90 100.100.Diameter Heq. 90 Over 90 100.10.1150.000 100.000242.5990.000 100.0004544.9389.759720.1310.000 100.000242.5990.000 100.0004551.47112.502630.1500.000 100.000252.9760.000 100.0004758.95313.90840.1720.000 100.000263.4090.000 100.0004867.52313.428350.1970.000 100.000284.4720.000 100.0004977.33911.344260.2260.000 100.000295.1220.000 100.00051101.4605.86180.2960.000 100.000305.8670.000 100.00052116.2103.78690.3390.000 100.000316.7200.000 100.00053133.1032.372100.3890.000 100.000327.6970.000 100.00054152.4531.485110.4450.000 100.0003511.5650.000 100.00055174.6160.953120.5100.000 100.0003511.5650.000 100.00057229.0750.000140.6690.000 100.0003511.5720.1299.88859300.5180.000160.8770.000 100.0003817.3770.1789.721 <td< th=""><th>No</th><th>Diameter</th><th>Erea %</th><th>Over %</th><th>No</th><th>Diameter</th><th>Eroa %</th><th>Over %</th><th>No</th><th>Diameter</th><th>Fred %</th><th>Over %</th></td<>	No	Diameter	Erea %	Over %	No	Diameter	Eroa %	Over %	No	Diameter	Fred %	Over %
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	190.	Diameter	Freq. 70	Over 70	110.	Diameter	1.1eq. %	Over 70	INU.	Diameter	11eq. 70	Over 70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.115	0.000	100.000	23	2.269	0.000	100.000	45	44.938	9.759	74.705
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.131	0.000	100.000	24	2.599	0.000	100.000	46	51.471	12.502	62.202
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0.150	0.000	100.000	25	2.976	0.000	100.000	47	58.953	13.908	48.294
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0.172	0.000	100.000	26	3.409	0.000	100.000	48	67.523	13.428	34.866
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0.197	0.000	100.000	27	3.905	0.000	100.000	49	77.339	11.344	23.522
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0.226	0.000	100.000	28	4.472	0.000	100.000	50	88.583	8.534	14.988
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	0.259	0.000	100.000	29	5.122	0.000	100.000	51	101.460	5.861	9.127
9 0.339 0.000 100.000 31 6.720 0.000 100.000 53 133.103 2.372 10 0.389 0.000 100.000 32 7.697 0.000 100.000 54 152.453 1.485 11 0.445 0.000 100.000 33 8.816 0.000 100.000 55 174.616 0.953 12 0.510 0.000 100.000 34 10.077 0.000 100.000 56 200.000 0.530 13 0.584 0.000 100.000 35 11.565 0.000 100.000 57 229.075 0.000 14 0.669 0.000 100.000 36 13.246 0.000 100.000 58 262.376 0.000 15 0.766 0.000 100.000 37 15.172 0.102 9.888 59 300.518 0.000 16 0.877 0.000 100.000 38 17.377 0.178 99.721 60 344.206 0.000 17 1.055 0.000 100.000 40 22.797	8	0.296	0.000	100.000	30	5.867	0.000	100.000	52	116.210	3.786	5.341
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	0.339	0.000	100.000	31	6.720	0.000	100.000	53	133.103	2.372	2.969
11 0.445 0.000 100.000 33 8.816 0.000 100.000 55 174.616 0.953 12 0.510 0.000 100.000 34 10.097 0.000 100.000 55 200.000 0.530 13 0.584 0.000 100.000 35 11.565 0.000 100.000 57 229.075 0.000 14 0.669 0.000 100.000 36 13.246 0.000 100.000 58 262.376 0.000 15 0.766 0.000 100.000 37 15.172 0.102 99.898 59 300.518 0.000 16 0.877 0.000 100.000 38 17.377 0.178 99.721 60 344.206 0.000 17 1.005 0.000 100.000 39 19.904 0.330 99.391 61 394.244 0.000 18 1.151 0.000 100.000 40 22.797 0.633 98.758 62 451.556 0.000 19 1.318 0.000 100.000 42	10	0.389	0.000	100.000	32	7.697	0.000	100.000	54	152.453	1.485	1.483
12 0.510 0.000 100.000 34 10.097 0.000 100.000 56 200.000 0.530 13 0.584 0.000 100.000 35 11.565 0.000 100.000 57 229.075 0.000 14 0.669 0.000 100.000 36 13.246 0.000 100.000 58 262.376 0.000 15 0.766 0.000 100.000 37 15.172 0.102 99.898 59 300.518 0.000 16 0.877 0.000 100.000 38 17.377 0.178 99.721 60 344.206 0.000 17 1.005 0.000 100.000 38 17.377 0.178 99.391 61 394.244 0.000 18 1.151 0.000 100.000 40 22.797 0.633 98.758 62 451.556 0.000 19 1.318 0.000 100.000 41 26.111 1.220 97.539 63 517.200 0.000 20 1.510 0.000 100.00	11	0.445	0.000	100.000	33	8.816	0.000	100.000	55	174.616	0.953	0.530
13 0.584 0.000 100.000 35 11.565 0.000 100.000 57 229.075 0.000 14 0.669 0.000 100.000 36 13.246 0.000 100.000 58 262.376 0.000 15 0.766 0.000 100.000 37 15.172 0.102 99.898 59 300.518 0.000 16 0.877 0.000 100.000 38 17.377 0.178 99.391 61 394.244 0.000 17 1.005 0.000 100.000 40 22.797 0.633 98.758 62 451.556 0.000 18 1.151 0.000 100.000 41 26.111 1.220 97.539 63 517.200 0.000 19 1.318 0.000 100.000 42 29.907 2.299 52.396 64 592.387 0.000 20 1.510 0.000 100.0000 43 34.255 4.094 91.145 22 1.981 0.000 100.000 44 39.234 6.682 8	12	0.510	0.000	100.000	34	10.097	0.000	100.000	56	200.000	0.530	0.000
14 0.669 0.000 100.000 36 13.246 0.000 100.000 58 262.376 0.000 15 0.766 0.000 100.000 37 15.172 0.102 99.898 59 300.518 0.000 16 0.877 0.000 100.000 38 17.377 0.178 99.721 60 344.206 0.000 17 1.005 0.000 100.000 39 19.904 0.330 99.391 61 394.244 0.000 18 1.151 0.000 100.000 40 22.797 0.633 98.758 62 451.556 0.000 19 1.318 0.000 100.000 41 26.111 1.220 97.539 63 517.200 0.000 20 1.510 0.000 100.000 42 29.907 2.299 95.239 64 592.387 0.000 21 1.729 0.000 100.000 43 34.255 4.094 91.145 22 1.981 0.000 100.000 43 39.234	13	0.584	0.000	100.000	35	11.565	0.000	100.000	57	229.075	0.000	0.000
15 0.766 0.000 100.000 37 15.172 0.102 99.898 59 300.518 0.000 16 0.877 0.000 100.000 38 17.377 0.178 99.721 60 344.206 0.000 17 1.005 0.000 100.000 39 19.904 0.330 99.391 61 394.244 0.000 18 1.151 0.000 100.000 40 22.797 0.633 98.758 62 451.556 0.000 19 1.318 0.000 100.000 41 26.111 1.220 97.539 63 517.200 0.000 20 1.510 0.000 100.000 42 29.907 2.299 95.239 64 592.387 0.000 21 1.729 0.000 100.000 43 34.255 4.094 91.145 22 1.981 0.000 100.0000 44 39.234 6.682 84.464	14	0.669	0.000	100.000	36	13.246	0.000	100.000	58	262.376	0.000	0.000
16 0.877 0.000 100.000 38 17.377 0.178 99.721 60 344.206 0.000 17 1.005 0.000 100.000 39 19.904 0.330 99.391 61 394.244 0.000 18 1.151 0.000 100.000 40 22.797 0.633 98.758 62 451.556 0.000 19 1.318 0.000 100.000 41 26.111 1.220 97.539 63 517.200 0.000 20 1.510 0.000 100.000 42 29.907 2.299 95.239 64 592.387 0.000 21 1.729 0.000 100.000 43 34.255 4.094 91.145 22 1.981 0.000 100.000 44 39.234 6.682 84.464 4	15	0.766	0.000	100.000	37	15.172	0.102	99.898	59	300.518	0.000	0.000
17 1.005 0.000 100.000 39 19.904 0.330 99.391 61 394.244 0.000 18 1.151 0.000 100.000 40 22.797 0.633 98.758 62 451.556 0.000 19 1.318 0.000 100.000 41 26.111 1.220 97.539 63 517.200 0.000 20 1.510 0.000 100.000 42 29.907 2.299 95.239 64 592.387 0.000 21 1.729 0.000 100.000 43 34.255 4.094 91.145 22 1.981 0.000 100.000 44 39.234 6.682 84.464	16	0.877	0.000	100.000	38	17.377	0.178	99.721	60	344.206	0.000	0.000
18 1.151 0.000 100.000 40 22.797 0.633 98.758 62 451.556 0.000 19 1.318 0.000 100.000 41 26.111 1.220 97.539 63 517.200 0.000 20 1.510 0.000 100.000 42 29.907 2.299 95.239 64 592.387 0.000 21 1.729 0.000 100.000 43 34.255 4.094 91.145 2 2 1.981 0.000 100.000 44 39.234 6.682 84.464 4	17	1.005	0.000	100.000	39	19.904	0.330	99.391	61	394.244	0.000	0.000
19 1.318 0.000 100.000 41 26.111 1.220 97.539 63 517.200 0.000 20 1.510 0.000 100.000 42 29.907 2.299 95.239 64 592.387 0.000 21 1.729 0.000 100.000 43 34.255 4.094 91.145 22 1.981 0.000 100.000 44 39.234 6.682 84.464	18	1.151	0.000	100.000	40	22.797	0.633	98.758	62	451.556	0.000	0.000
20 1.510 0.000 100.000 42 29.907 2.299 95.239 64 592.387 0.000 21 1.729 0.000 100.000 43 34.255 4.094 91.145 22 1.981 0.000 100.000 44 39.234 6.682 84.464 54.367 0.000	19	1.318	0.000	100.000	41	26.111	1.220	97.539	63	517.200	0.000	0.000
21 1.729 0.000 100.000 43 34.255 4.094 91.145 22 1.981 0.000 100.000 44 39.234 6.682 84.464	20	1.510	0.000	100.000	42	29.907	2.299	95.239	64	592.387	0.000	0.000
22 1.981 0.000 100.000 44 39.234 6.682 84.464	21	1.729	0.000	100.000	43	34.255	4.094	91.145				
	22	1.981	0.000	100.000	44	39.234	6.682	84.464				