Descripción:
CONDICIONAMIENTO DE PUBLICACION DE PROYECTO. Este proyecto se orienta a resolver la necesidad de detectar de manera anticipadas patrones inusuales en las transacciones comerciales de una empresa exportadora del sector acuícola, con el propósito de fortalecer la auditoría financiera moderna y contemporánea y minimizar riesgos asociados a prácticas irregulares o fraudes. El objetivo principal del trabajo fue utilizar modelos de análisis predictivo que, mediante la aplicación de técnicas de aprendizaje automático, posibilite la identificación de comportamiento extraños y tendencias relevantes en los mercados de exportación y mercado local. La metodología adoptada se basó en el modelo CRISP-DM, que se caracteriza en los proyectos de ciencia de datos, integrando las fases de comprensión del negocio y de los datos, preparación, modelado, evaluación y diseño de la propuesta; se clasifica como un proyecto de solución tecnológica. La estructura del trabajo empieza desde la exposición del problema hasta la implementación e interpretación de algoritmos de machine learning supervisados y no supervisados, que incluyen DBSCAN, isolation forest, random forest y regresión logística, para finalmente formular una propuesta de aplicación. Como parte significativa, el proyecto permitió identificar con precisión patrones y anomalías que optimizan el control interno en contabilidad, respaldan decisiones estratégicas y dotan a la empresa de una herramienta muy útil en la nube para el monitoreo continuo de sus transacciones, incorporando capacidades analíticas de un nivel alto a su sistema de control interno.